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Executive summary  

Earth Observation (EO) products provide key information about water abstraction through the 

identification of irrigation activities and the estimation of abstracted/consumed water volumes. 

However, like for in-situ non-EO-based approaches, this information needs to be compared to 

legal reference data to be able actually to detect possible cases of illegal irrigation. 

The overall aim of WP2 is to implement an EO methodology and production line for detecting 

irrigated areas and estimating irrigation requirements and possibly actual water use. It includes 

data products and services based on a combination of EO data acquired by various platforms as 

well as meteorological and complementary data derived from different data sources, especially 

from pilot areas. 

This document aims to describe the validation process of the data products provided by DIANA. 

For each Diana data product –i) Crop classification, ii) Maps of irrigated area, iii) Crop 

evapotranspiration, iv) Net Irrigation requirements, v) Gross irrigation requirements, vi) 

Meteorological products - the validation and evaluation were performed. 

From the methodological point of view, data products listed in this document were defined 

considering “Users’ and stakeholders’ Requirements Analysis” and “Data requirements manual” 

described respectively in the deliverable D1.1 and D2.2. This approach ensures to meet the 

realities in which to apply DIANA services addressing the users’ requirements properly regarding 

spatial, temporal and spectral resolution and by extending the operational capabilities of the 

platform offered. 

It is worth to note that considering a wide range of data – acquired by different sources - the 

validation process could be adapted and consequently changed during the running of services in 

each pilot area. 

Bearing this in mind, the information contained in this document will represent an easy reference 

guide about the data product validation adapted to each different context. 
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1 Introduction 

1.1 Purpose and scope of the document 

How good is a dataset?  

According to Loew et al. (2017)1, validating the uncertainties in satellite data products is a very 

challenging task. In this context, can be found in literature a wide range of technical approaches - 

as well as methods and terminology- used by the Earth Observation (EO) communities. 

The primary goal of DIANA is to provide users with tools that help them fulfil their mission and 

perform their daily routine operations more easily and better, and then quantifying the quality of 

the data products and services, is a fundamental objective to achieve. 

This document details the results on the validation of the algorithms and methodologies 

considered to deliver the products, tools and services provided by the DIANA project. 

These validation results are based on a combination of Earth Observation (EO), meteorological, 

modelled and in-situ data, collected for the different pilot areas considered in the project (Italy, 

Spain and Romania). 

The algorithms and methodologies are described in detail in the “EO Methodology for DIANA 

services” (D2.1). 

In the context of the data products validation, this report is the first version of an evolving 

document. This early version will be completed with the "Data products validation report (2)" 

(D2.4) scheduled for the M36. 

In this document are also reported the preliminary results of the “Diana Benchmark Exercise”. A 

specific task delineated during technical meetings, which aims to improve the detection of 

irrigated areas process, taking into account the soil moisture data estimated from EO data. More 

details about the approaches and the algorithms tested are reported in Section 5. 

 

  

                                                           
1 Loew, A., Bell, W., Brocca, L., Bulgin, C. E., Burdanowitz, J., Calbet, X. & Kinzel, J. (2017). Validation practices for satellite‐based Earth 
observation data across communities. Reviews of Geophysics, 55(3), 779-817. 
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2 Italian Pilot area: Data products validation for the year 

2018 

2.1  Map of Irrigated Areas 

For the irrigation season 2018, the detection of irrigated areas was performed using a supervised 

“multi-temporal classification” based on a time series of Vegetation Indices (Vis). The 

classification process based on temporal pattern recognition exploits the captured differences 

from the canopy on the VI to assign each pixel to a vegetation class. These classes need to be 

defined based on field inspections and knowledge about crop phenology and crop management. 

The proposed methodology is founded on the assumption that the hydrologic deficit typical of 

the semi-arid environments, as for the Mediterranean basin, the only detectable crops are those 

that are irrigated. In order to follow the phenological development of crops in the irrigation 

season, the considered approach is based on the use of a time series of the multispectral satellite 

images, opportunely processed in a semi-automatic workflow. 

This application is based on the utilisation of data from the Multispectral Instrument (MSI) on 

board of Sentinel 2A & 2B platforms. To perform the irrigated areas detection a time series of S2A 

& B was selected. In detail, considering a cloud cover less than 20%, 44 images captured for the 

year 2018 were chosen (Table 1). 

Tile Granule 
n° S2 images 
 per month 

Acquisition Time 
(yyyy-mm-dd) 

T33 TVF 

5 2018/01/13-18-21-26-28 

2 2018/02/15-17 

1 2018/03/24 

4 2018/04/03-08-21-26 

3 2018/05/18-26-31 

5 2018/06/02-10-17-25-30 

7 2018/07/02-05-10-20-25-27-30 

9 2018/08/01-04-06-09-11-19-21-24-29 

8 2018/09/05-08-10-15-23-25-28-30 

Table 1 - S2 images used in the irrigated areas detection process 

For EO applications, based on the multi-temporal approach (i.e. change detection, land surface 

phenology, land cover classification, etc.) an atmospheric correction is one of the most important 

steps, with the aim to convert the original digital data, generally in Digital Number (DN), into the 
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specific physical magnitudes (Caselles & Lopez Garcia, 1989)2. In other words, the surface 

reflectance for each considered input data is required. 

Atmospheric and topographic corrections can be applied to satellite images before classification 

in order to normalise radiance and digital number (DN) values (Young et al., 2017)3. Atmospheric 

correction aims at determining the true surface reflectance values by removing the atmospheric 

effects resulting from the scattering and absorption of electromagnetic radiation by gases and 

aerosols when passing through the atmosphere to the satellite sensor (Hadjimitsis et al., 2010)4. 

Previous studies have reported that atmospheric correction is one of the most important 

corrections, especially when working with multiple scenes at different temporal scales (Song et 

al., 20015; Vanonckelen et al., 2013)6. Topographic correction is the process of reducing the 

variation of image values resulting from differences in surface terrain illumination and shadows 

cast during image acquisition (Vanonckelen et al., 2013)6; these effects are especially common in 

rugged or mountainous areas. Studies have reported various effects of topographic correction. 

For example, 

Vanonckelen et al., (2013)6 reported that topographic correction improved classification accuracy 

from 78 to 89% in mountainous areas, while other studies showed that topographic correction 

might not significantly improve accuracy in land cover classification routines (Carpenter et al., 

19997; Goslee, 20128; Mitri & Gitas, 20049; Zhang et al., 201110). 

                                                           
2 Caselles, V., Lopez Garcia, M. J. (1989). An alternative simple approach to estimate atmospheric correction in multitemporal studies. 
International Journal of Remote Sensing, 10(6), 1127–1134. http://doi.org/10.1080/01431168908903951.  
3 Young, N.E., Anderson, R.S., Chignell, S.M., Vorster, A.G., Lawrence, R., Evangelista, P.H. (2017). A survival guide to Landsat 
preprocessing. Ecology 98 (4), 920–932. http://dx.doi.org/10.1002/ecy.1730. 
4 Hadjimitsis, D. G., Papadavid, G., Agapiou, A., Themistocleous, K., Hadjimitsis, M., Retalis, A., Michaelides, S., Chrysoulakis, N., 
Toulios, L., Clayton, C. R. I. (2010). Atmospheric correction for satellite remotely sensed data intended for agricultural applications: 
impact on vegetation indices. Nat. Hazards Earth Syst. Sci. 10 (1), 89–95. http://dx.doi.org/10.5194/nhess-10-89-2010. 
5 Song, C., Woodcock, C.E., Seto, K.C., Lenney, M.P., Macomber, S.A. (2001). Classification and change detection using Landsat TM 

data: when and how to correct atmospheric effects? Remote Sens. Environ. 75 (2), 230–244. http://dx.doi.org/10.1016/S0034-

4257(00)00169-3. 
6 Vanonckelen, S., Lhermitte, S., Van Rompaey, A. (2013). The effect of atmospheric and topographic correction methods on land 

cover classification accuracy. Int. J. Appl. Earth Obs. Geoinform. 24, 9–21. http://dx.doi.org/10.1016/j.jag.2013.02.003. 
7 Carpenter, G.A., Gopal, S., Macomber, S., Martens, S., Woodcock, C.E. (1999). A neural network method for mixture estimation for 

vegetation mapping. Remote Sens. Environ. 70 (2), 138–152. http://dx.doi.org/10.1016/S0034-4257(99)00027-9. 
8 Goslee, S.C. (2012). Topographic corrections of satellite data for regional monitoring. Photogramm. Eng. Remote Sens. 78 (9), 973–

981. http://dx.doi.org/10.14358/PERS.78.9.973. 
9 Mitri, G., Gitas, I. (2004). A performance evaluation of a burned area object-based classification model when applied to 

topographically and non-topographically corrected TM imagery. Int. J. Remote Sens. 25 (14), 2863–2870. 

http://dx.doi.org/10.1080/01431160410001688321. 
10 Zhang, Z., De Wulf, R. R., Van Coillie, F. M., Verbeke, L. P., De Clercq, E. M., Ou, X. (2011). Influence of different topographic 

correction strategies on mountain vegetation classification accuracy in the Lancang Watershed. China. J. Appl. Remote Sens. 5 (1), 

053512. http://dx.doi.org/10.1117/1.3569124. T.N. Carlson, R.R. Gillies, E.M. Perry. 

http://doi.org/10.1080/01431168908903951
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In this application, the candidate images were selected considering a cloud coverage less than the 

20 % of the full scene. Nevertheless, with the aim to achieve a correct interpolation of the NDVI 

time-series, the clouds removing and gap filling technique is executed, using the Whittaker 

smoother developed by Eilers (2003)11 (a weighted spline with second-order finite difference 

penalty) and a smoothing parameter that preserves fidelity to data rather than data smoothness 

(Atzberger & Eilers, 2011)12. The smoother the result, the more it will deviate from the input data. 

A balanced combination of the two goals is the sum (Q): 

𝑄 = 𝑆 + 𝜆𝑅 (1) 

𝑆 = ∑ (𝑉𝐼𝑡
𝑡

− 𝑉𝐼𝑡
∗)2 (2) 

𝑆 = ∑ (𝑉𝐼𝑡
𝑡

− 3𝑉𝐼𝑡−1
∗ + 3𝑉𝐼𝑡−2

∗ − 3𝑉𝐼𝑡−3
∗ )2 (3) 

The lack of fit to the data S (Eq. 2) is measured as the usual sum of squares of differences. The 

roughness of the smoothed curve R (Eq. 3) is expressed here as third order differences. The 

smoothing parameter (λ) is chosen by the user. Penalised least squares aim to find the series VI(t) 

that minimises Q (Eq. 1). The larger the parameter λ, the greater is the influence of R on the goal 

Q and the smoother will be VI (t) (at the cost of the degradation of the fit). 

The Whittaker smoother is applied independently for each raster and each pixel to produce 

smoothed and gap-filled VI. Diversely from other methods, the Whittaker adapt the filtering to 

each single pixel within the image, thus providing the maximum adaptability for the image itself. 

Whittaker is based on two assumptions (Chen et al.,2004)13: 

i) That the time series of vegetation index follows an annual cycle of growth and decline as the 

index is primarily related to vegetation density and plant vigour. 

ii) That clouds and poor atmospheric conditions produce a negative bias in the vegetation index 

values, requiring that sudden drops in vegetation index, which are not compatible with the 

gradual process of vegetation change, are regarded as noise and will be removed. Past the 

filtering, we used shape constraints, based on statistical analysis of raster data, for reduce edge 

effect. 

                                                           
11 Eilers, P. H. C. (2003). A perfect smoother. Analytical Chemistry. http://doi.org/10.1021/ac034173t 
12 Atzberger, C., Eilers, P. H. C. (2011). Evaluating the effectiveness of smoothing algorithms in the absence of  ground reference 

measurements. International Journal of Remote Sensing, 32(13), 3689 3709, 2011. 
13 Chen,  J.;  Jönsson,  P.;  Tamura,  M.;  Gu,  Z.H.;  Matsushita,  B.;  Eklundh,  L.  A  simple  method  for  reconstructing  a  high quality  

NDVI  time series  data  set  based  on  the  Savitzky–Golay  filter.  Remote  Sens. Environ. 2004, 91, 332–344 
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According to (Garcia-Pedrero, Gonzalo-Martin, Fonseca-Luengo, & Lillo-Saavedra, 2015)14, to 

provide agricultural services based on EO data, a correct delineation of agricultural parcels is a 

fundament requirement, and the high-resolution satellite images and machine-learning 

algorithms play a key role for these purposes. Hence, in this work to detect the irrigated areas, a 

supervised classification was applied using as input data the NDVI time series. In detail, the 

performance achievable from different Machine Learning Algorithms (MLA) were tested (Kuhn & 

Johnson, 2013)15: 

 Artificial Neural Network (ANN), 

 Single Decision Tree (DTs), 

 k-nearest neighbour (k-NN), 

 Random Forest (RF), 

 Support Vector Machine (SVM). 

To train these algorithms ground truth data were considered. During the irrigation season 2018, 

the Sannio Alifano Consorzio staff conducted field inspections, collecting 1200 points balanced 

for three classes (same size of training sample) distributed in the whole area: i) Bare soil or rainfed, 

ii) herbaceous and iii) tree crop. Subsequently, with the aim to obtain a robust validation of the 

irrigated areas map, the ground truth dataset (pixels) were separated into training and test 

samples using random sampling stratified by class, with 25% of pixels used to train the model, and 

75% of the pixel used to validate the model. Most machine-learning algorithms have user-defined 

parameters that may affect classification accuracy. Although default values are often suggested 

for these parameters, empirical testing to determine their optimum values is needed to ensure 

confidence that the best possible classification has been produced. The relative difficulty of 

running parameter optimisation for different classifiers is often cited as a major consideration in 

selecting an algorithm. One commonly used method is k-fold cross-validation. In this method, the 

training data are randomly split into k disjunct subsets (e.g. 10). The model is then run k times, 

each time withholding one of the subsets, which is used for validation. The results of each run are 

assessed using the withheld data, and the results are averaged across all k replicates. In this way, 

is possible to test a range of values for all combinations of the parameters empirically, and the 

combination that yields the best performance, commonly defined based on overall classification 

                                                           
14 Garcia-Pedrero, A., Gonzalo-Martin, C., Fonseca-Luengo, D., & Lillo-Saavedra, M. (2015). A GEOBIA methodology for fragmented 

agricultural landscapes. Remote Sensing, 7(1), 767-787. 
15 Kuhn, M., & Johnson, K. (2013). Applied predictive modeling. (Vol. 26). New York: Springer. 
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accuracy or the kappa statistic, is selected. Parameter tuning, in which an optimal value for the 

parameter is estimated for classifications, was performed using 10-fold cross validation for each 

model. For consistency, the tuneLength parameter was set to 10 so that 10 values of each 

parameter were assessed. All variables were also centred and rescaled for consistency, before 

classification. The best parameters were used to create a model that was then applied to the 

validation or test data. 

Following this approach, to estimate the thematic accuracy of the classification process, an error 

matrix was computed for each considered algorithms, considering the classical accuracy measures 

reported in literature, as: Producer’s Accuracy (PA), User’s Accuracy (UA) and Overall Accuracy 

(OA) (Story & Congalton, 1986)16, (Congalton & Green, 2009)17. 

The results of the thematic accuracy validation are plotted in the following graph (Figure 1). 

 

Figure 1 - User’s Accuracy and Producer’s Accuracy of the thematic class distinguished by the considered MLA. All 

numbers refer to the independent validation dataset not used during training. 

The results of the accuracy assessment show high values of the accuracy measures for the SVM 

and RF, with a negligible difference between the two algorithms. In conclusion, considering the 

                                                           
16 Story, M., Congalton, R. G. (1986). Accuracy assessment: a user’s perspective. Photogrammetric Engineering & Remote Sensing, 

52(3), 397–399. http://doi.org/10.1111/j.1530-9290.2010.00257.x 
17 Congalton, R. G., Green, K. (2009). Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. The Photogrammetric 

Record (Vol. 2). http://doi.org/10.1111/j.1477-9730.2010.00574_2.x 
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results reported in Table 7, the SVM algorithm was selected to deliver the Map of irrigated areas 

(Figure 2) as data products on DIANA platform. 

Machine Learning Algorithms Overall Accuracy 

SVM 0.97 

RF 0.96 

ANN 0.94 

k-NN 0.93 

DTs 0.91 

Table 2 - Machine Learning Algorithms ranked by OA. 

 

Figure 2 – Map of Irrigated areas obtained by the SVM algorithm. 

2.2  Crop Evapotranspiration 

The estimation of Crop Evapotranspiration (ETp) was performed by the direct calculation based 

on the Penman-Monteith equation. More details are reported in the deliverable 2.1 (Paragraph 

3.2).  

The literature is abundant in EO - based ET models or model-variants and validations of these 

models in different environments, surfaces and management, confirming that EO is a mature 

technology ready to be transferred to operational applications in irrigation management. Several 

papers have demonstrated the accuracy of the methods mentioned above (Rubio et al., 2006)18. 

                                                           
18 Rubio, E., Colin, J., D’Urso, G., Trezza, R., Allen, R., Calera, A., González, J., Jochum, A., Menenti, M., Tasumi, M., Kelly, C., Vuolo, F. 

(2006). Golden day comparison of methods to retrieve et (Kc-NDVI, Kc-analytical, MSSEBS, METRIC). AIP Conference Proceedings, 852, 

193–200. http://doi.org/10.1063/1.2349344. 
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Comparison between different methods and micrometeorological measurements, i.e. Eddy 

Covariance fluxes data are shown, for example, in Rubio et al., 2006; D’Urso et al., 201019.  

Unfortunately, in the Italian Pilot area, such measurements are not available. For this purpose, 

with the aim to validate the crop evapotranspiration, two approaches are followed: 

- Validation of LAI: The Leaf Area Index represents the main input variable related to the 

crop development in the calculation of ET using the Penman-Monteith approach. The error 

on LAI propagates in the estimation of ET in a significant way. Field non-destructive 

measurements of LAI have been used to compare with the EO-product utilised in the 

calculations. In detail, during the irrigation season 2018, the field measurements of LAI 

have been executed using the portable canopy digital analyser (LAI-2000 Plant Canopy 

Analyzer, LI-COR), under conditions of diffuse illumination at sunset. The LAI value at each 

location is resulting as the average of 3 repetitions of 8 below canopy readings taken within 

a 5 m radius of the georeferenced location. An opaque cover (view cap) on the optical 

sensor, with an open wedge of 45°, was used to avoid the influence of neighbouring 

obstacles, such as the operator (Gower and Norman, 199120; Li-Cor, 199221). In conclusion, 

considering a sample of 33 values collected for herbaceous (Maize and Alfalfa) and tree 

crops (Apple, Peach and Hazelnut) the validation was executed (Figure 3). 

 

Figure 3 - Scatterplot of field LAI measured vs. Sentinel-2 LAI product. 

                                                           
19 D’Urso, G., Richter, K., Calera, A., Osann, M. A., Escadafal, R., Garatuza-Pajan, J., Hanich, L., Perdigão, A., Tapia, J. B., Vuolo, F. 

(2010). Earth Observation products for operational irrigation management in the context of the PLEIADeS project. Agricultural Water 

Management, 98(2), 271–282. http://doi.org/10.1016/j.agwat.2010.08.020. 
20 Gower, S. T., Norman, J. M. (1991). Rapid estimation of leaf area index in conifer and broad‐leaf plantations." Ecology 72.5 (1991): 

1896-1900 

21 Li-Cor LAI-2000 Plant Canopy Analyser: Instruction Manual. Nebraska Li-Cor, Inc., Lincoln (1992) (179 pp.) 
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- ETa vs. ETp: Crosscheck comparison between the actual Evapotranspiration (ETa) derived 

from MODIS data (MOD16A2) and ETp PM-FAO56 derived from Sentinel-2 data. Following 

the Analytical Approach, proposed by D’Urso & Menenti (1995)22, the daily ETp values were 

estimated using the standard FAO vegetation parameters (Allen et al.,1998)23, while for 

the actual ETa MODIS were used as input the same satellite data (LAI and albedo MODIS 

products) used by the MOD16 ET algorithm. More details are reported in the annexes 

section (8.1). Subsequently, the daily ETp products were aggregate to match the temporal 

composite resolution of the MODIS ETa (8-days). Moreover, the comparison was assessed 

by masking for each image the MODIS ET “fill values” pixels corresponding to non-

vegetated areas (e.g. urban/build-up, barren, sparse vegetation) for which the MOD16 

algorithms do not calculate the ET. The comparison was assessed by temporal and spatial 

pattern analysis between the ETa derived from MOD16 ET and the Analytical ETp, derived 

from Sentinel-2. Indeed, considering the difference of the spatial resolution of the two 

sensors (500 m MODIS, 10 m S2), the validation was performed by considering only the 

fully irrigated pixels – detected by the Map of Irrigated Areas – which had dimensions 

coherent with the MODIS resolution. For the irrigation season 2018, following this criteria, 

a sample of 12 pixels was selected from the MODIS Grid (Figure 4). 

 

Figure 4 - MODIS pixel selected and their location in the Sannio Alifano pilot area. 

                                                           
22 D'Urso, G., Menenti, M. (1995). Mapping crop coefficients in irrigated areas from Landsat TM images. In Remote Sensing for 
Agriculture, Forestry, and Natural Resources (Vol. 2585, pp. 41-48). International Society for Optics and Photonics. 
23 Allen, R., Pereira, L., Raes, D. Smith, M. (1998). Crop evapotranspiration - Guidelines for computing crop water requirements. FAO 
Irrigation and drainage paper 56. Fao, Rome, 1998, 300.9: D05109. 
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Figure 5 – The class percentage of irrigated surface included in each selected pixel MODIS. 

The statistical spatial assessment was performed at the pixel level by the R-square, and the 

Root Mean Square Error (RMSE ETa MOD16A2- ETp PM-FAO56) calculated as: 

𝑅𝑀𝑆𝐸 = √
∑ (𝐸𝑇𝑎𝑀𝑂𝐷16𝐴2 − 𝐸𝑇𝑝𝑃𝑀−𝐹𝐴𝑂56)𝑁

𝑖=1

𝑁
 

(4) 

where, N is the number of valid ET MODIS value for each pixel during the considered 

period (irrigation season 2018). 

 

Figure 6 - An example of selected pixel details and the corresponding scatterplot of ETa vs ETp. 
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Figure 7 - Comparison between ETa MOD16A2 (mm/8-days) and ETp PM-FAO56 (mm/8-days) values for the irrigation 

season 2018 (from April to September). 

 

In conclusion, in the results analysis context, it is necessary to take into account that footprints of 

the two sensor types might still vary considerably due to geolocation errors, view-angle effects 

and different point-spread functions (PSF). Different band locations and widths have also to be 

considered. Other differences can be explained from the different algorithms used and from the 

different source of the meteorological dataset. While the Analytical Approach uses daily 

meteorological data (ERA-Interim produced by ECMWF), the MOD16 algorithm use daily 

meteorological data produced by NASA’s GMAO at the spatial resolution of 0.5° x 0.6°using a 

global circulation model and both ground and satellite-based observations.  
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2.3  Net Irrigation Water Requirements 

To validate the Net Irrigation Water Requirements (NIWR) data a crosscheck comparison was 

performed between the Total Precipitation (Tp) estimated by the reanalysis model and the data 

recorded by the agrometeorological ground stations located in the Sannio Alifano area. In detail, 

for the irrigation season 2018, regarding the reanalysis model the ERA-Interim dataset was 

considered (ECMWF), while for the local rainfall data was considered the Tp recorded by the 

ground station of the CFM network (Centro Funzionale Multirischi) managed by the Civil 

Protection Department24. At this stage, six CFM ground station were selected, considering their 

intersection with the ERA-Interim Grid (cell size ≈ 12 Km) (Figure 8). Subsequently, the analysis 

has been conducted cumulating the daily Tp values recorded in the entire irrigation season 2018 

(from April to September). An overview of this comparison is plotted in Figure 9. 

 

 

Figure 8 - CFM agrometeorological stations and their intersection with the ERA-Interim Grid. 

 

                                                           
24 http://centrofunzionale.regione.campania.it/#/pages/dashboard 
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Figure 9 - Comparison of ERA-Interim and CFM total precipitation cumulated for the Irrigation season 2018 (mm/6-

months). 

Following this approach, it was possible to adjust – where needed – the ERA-Interim data product, 

then to consider a more accurate Net Precipitation (Pn) involved into NIWR computation process. 

In detail, with the aim to obtain the effective precipitation, the ERA-Interim Tp values have been 

reduced take into account the canopy development described using the LAI and fractional 

vegetation cover (fc) computed from the Sentinel-2 data (Braden, 1985)25. 

 

Figure 10 - The concept of the NIWR validation process. 

                                                           
25 Braden, H. (1985). Ein energiehaushalts-und verdunstungsmodell for wasser und stoffhaushaltsuntersuchungen landwirtschaftlich 
genutzer einzugsgebiete. Mittelungen Deutsche Bodenkundliche Geselschaft. Retrieved from 
https://scholar.google.it/scholar?q=48.+Braden%2C+H.+Ein+Energiehaushalts-
+und+Verdunstungsmodell+for+Wasser+und+Stoffhaushaltsuntersuchungen+landwirtschaftlich+genutzer+Einzugsgebiete.+Mittelun
gen+Dtsch.+Bodenkundliche+Geselschaft+1985%2C+42%2C+294–299.&btnG=&hl=it&as_sdt=0%2C5#0 
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2.4  Gross Irrigation requirements 

To validate the Gross Irrigation Water Requirements (GIWR) data products, a comparison 

between the water volume applied and those deduced from EO data was conducted. In detail, 

the efficiency coefficients are applied to estimate the GIWR from NIWR, then with the aim to take 

into account in a lumped way of all water losses occurring in the distribution network of irrigation 

canals and pipelines.  

To quantify the goodness of this approach, a comparison of the water volume applied and GIWR 

estimated from EO data was performed considering a sample of farms. The information was 

provided, by the Sannio Alifano Consorzio Staff, regarding cadastral coordinates - Municipality, 

Sheet and Parcel –irrigation scheduling and identity of landowners. The analysed sample is based 

on four farms with tree crop (Table 3), equipped by a drip irrigation system, then the irrigation 

efficiency considered is 0.9. The results are shown in the following graph (Figure 11) 

 Farm 
Tree 
crop 

Irrigation Period (2018) 
Irrigation 
system 

Efficiency 

1 Peach May to August 

drip irrigation 0.9 
2 Hazelnut July-August 

3 Apple June to September 

4 Peach  June to September 

Table 3 - Specifications of farms selected. 

 

 

Figure 11 - Crosscheck comparison performed to validate the GIWR data product. 
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3 Spanish Pilot area: Data products validation for the 

year 2018 

As mentioned, the validation approach of the data products elaborated in DIANA requires two 

types of processes. On the one hand, those concerning the technical quality of the products, and 

on the other hand, the usability of these products, what is closely related to the DIANA platform 

that is being built. Both validation aspects require users involvement. 

Aware of the difficulty of the validation procedure, for the Spanish pilot areas, whose location is 

shown in Figure 12, the validation process began with the own selection of the pilot areas. Besides 

those already previously included, like “Mancha Oriental” and “Bembezar Margen Derecha”, 

other demonstration areas like “Bajo Jalón” and “Tierra del Vino” were selected by the Spanish 

Ministry, together with the Spanish DIANA team. By this way, is easier to involve these users to 

whom DIANA products are destined into the validation process from the earlier steps.  

 

Figure 12 - Location of Spanish pilot areas, whose limits are superimposed on the Iberian Peninsula map. 
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3.1 Identified water managers’ needs for the detection and monitoring 
of water abstractions 

During the first year of the project, stakeholders expressed their requirements for a better 

knowledge of water abstractions and specifically on irrigation uses of irrigated areas and 

abstraction volumes. In the Spanish pilot area involved stakeholders are: 

- Water users association:  

 Junta Central Mancha Oriental, JCRMO ( Central Board of Mancha Oriental) and  

 Federación de Regantes de Andalucía, FERAGUA 

-Water authorities: 

Ministerio para la Transición Ecológica, Dirección General del Agua 

River Basin Authority (Hydrological Planning Office): Júcar river, Ebro river, Duero river, 

Guadalquivir river  

The operational requirements emerged included different aspects:  

 continuous monitoring of irrigated areas and volumes abstracted from well-established 

areas; 

 ensuring the reliability of self-declarations on water abstractions; 

 optimising field inspections to ensure compliance with legal requirements on water 

abstraction; 

 ensuring compliance in regards to seasonal water restrictions in the event of drought 

management. 

Complementary requirements included: 

 regularising historical water rights using better identification of water users; 

 ex-post assessment on the implementation and efficiency of water management systems, 

providing different time scales (crisis or structural) as a base for to adopting future 

actions;  

 adjustment of water prices and implementation of a volume-based fee system; 

 support for irrigation scheduling to increase efficiency. 

DIANA service “Non-authorized water abstraction detection and monitoring for control 

optimisation” designed and implemented to fulfil these requirements through three main 

products: 

 Maps of irrigated areas 
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 Maps of Net Irrigation Water Requirements (Gross Irrigation Water Requirements)  

 Time series of EO images, 

Maps of Irrigated Areas 

The detection of irrigated areas (providing a clear identification of the exact location and areal 

extent) requires land-use/land-cover maps that allow distinguishing irrigated from non-irrigated 

crops. The successful and widely used methodology implies the use of a supervised “multi-

temporal classification” based on a time series of EO images. These images provide the temporal 

evolution of crops and vegetation during growing season through spectral reflectances, derived 

Vegetation Indices, (like NDVI, the Normalized Difference Vegetation Index, EVI, SAVI and others), 

and even, when available, surface temperatures, and radar-based soil moisture by using Sentinel1 

imagery. The classification process based on temporal pattern recognition is based on the 

resulting differences of the canopy on the parameters mentioned above that allow relating each 

pixel or a group of pixels to a vegetation class. The classes need to be defined from fieldwork and 

previous knowledge of crop phenology in a given area. The crop classification is the prerequisite 

for the identification of irrigated areas and the exact period of irrigation. 

The identification of plots that receive supplemental irrigation (i.e. less amount of water, but in a 

well-selected timeframe) usually implies more difficulties: under this practice crops show lower 

contrast compared to the same non-irrigated crop. Supplemental irrigation is usually used when 

water stress occurs, and it is employed both in extensive herbaceous annual crops and woody 

crops. In this case, precipitations data is needed to distinguish irrigation (the vegetation index, 

reflecting the plant water status, does not differentiate between water coming from rainfall or 

irrigation). 

A benchmarking exercise is ongoing in DIANA to tackle those Mediterranean crops like vine, olive, 

and almond, among others, which exhibit sparse ground cover and where the deficit controlled 

irrigation is a usual practice. This exercise tries to exploit in an integral approach new reflectance 

bands of Sentinel-2, like those placed on the SWIR wavelength, radar-based soil moisture from 

Sentinel1 imagery, and temperature from Landsat 8, besides conventional Vegetation Index time 

series.  

Maps of Net Irrigation Water Requirements, NIWR maps 

A soil water balance following the FAO56 approach, integrating into it a reflectance-based crop 

coefficient, what we call EO-based soil water balance, has been applied to the pilot areas for the 
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2016 to 2018 years. The year 2018 products are currently ongoing. By this way, calculation of 

NIWR in a pixel by pixel way and the daily step is performed.  

Either the Irrigated Area maps, either the NIWR maps need to be adapted to the users' 

requirements. So, the raw product, usually expressed into a pixel by pixel basis is aggregated into 

the spatial field scale, which is the object of the water administrative rights.  For NIWR products, 

two-time scales are utilised for temporal aggregation: monthly and annual. By this way, it is 

feasible to compare with authorised irrigated areas and authorised amounts of water for 

irrigation. 

Time series of EO images  

In the framework of authorised amounts of water for irrigation, the “Annual Exploitation Plan, 

AEP” is a key tool. The AEP updates for each irrigation campaign and each field the authorised 

amount of water, by using parameters like piezometric evolution for groundwater abstractions, 

amount of water on the reservoirs, and so on. According to the stakeholder requirements, the 

AEP compliance enforcement requires continuous monitoring during the whole irrigation 

campaign.  

Time series of images on real-time provides valuable help to monitor continuously the AEP. It 

requires some infrastructure for delivering the images in a proper way for helping the field 

inspection, what is accomplished by the DIANA platform. Table 4 shows the products delivered to 

the users for the Spanish pilot areas submitted for validation by the users, according to their 

requirements. 

PILOT AREAS, 
SPAIN 

PRODUCTS DELIVERED TO WATER MANAGERS and THE RIVER 
BASIN AUTHORITIES 2016-2018 

EO BASIC PRODUCTS 
Time series Maps of 

Irrigated 
areas 

2016 -2018 

EO-based Soil Water Balance 

RGB NDVI Kcb 
Net (Gross) Irrigation Water 

Requirements Monthly/annual) 

Tierra del Vino √ √ √ √ √ 

Bajo Jalón √ √ √ √ √ 

Bembezar MD √ √ √ √ √ 

Mancha Oriental √ √ √ √ √ 

Table 4 - Products delivered to stakeholder, water managers and river basin authorities, submitted for validation. 
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3.2 Validation of technical quality: accuracy of the maps of Irrigated 
Areas and NIWR map 

Field inspections in the case of the area of the Mancha Oriental have allowed to evaluate the 

reliability of this methodology of crop classification, reaching 90-95% in the case of the 

determination of irrigated areas of arable crops, and 70% in the case of the determination of 

irrigated areas of woody crops. 

Numerous works support the EO-based soil water balance for the calculation of the NIWR maps 

at field scale (for a review, see Calera et al., 2017)26, and therefore, the calculated NIWR 

represents the optimal quantity of water to supply the crop. However, individual decisions made 

by farmers about the water to apply may not match this amount. But, the so calculated optimal 

amount of water to supply to the crop currently is being used for advising about water to apply in 

sustainable water use.  

Beyond of technical aspects, the delivered NIWR maps are being checked directly by the users. 

The Water Directorate of Spanish Environmental Ministry has begun a program to evaluate the 

results obtained in DIANA, by comparing the NIWR maps against data directly obtained by the 

river basin authorities from water meter data, and other sources, in different areas and different 

environments. This program aims to evaluate the application of the same and homogeneous EO-

based methodology and its potential use for the whole Spanish territory. 

  

                                                           
26 Calera, A., Garrido-Rubio, J., Belmonte, M., Arellano, I., Fraile, L., Campos, I., Osann, A. (2017). Remote sensing-based water 
accounting to support governance for groundwater management for irrigation in La Mancha Oriental Acquifer, Spain. WIT Transactions 
on Ecology and the Environment, 220, 119-126. 
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4 Romanian Pilot area: Data products validation for year 

2018 

4.1 Map of irrigated areas 

Banat region is located in the South-West of Romania bordered by the Mures river in the north, 

the confluence between Danube and Cerna rivers in the south, Romanian – Serbian border in the 

west and the Jiu river in the east. From the morphological point of view, this plain is a flat relief 

unit, with uniform appearance but heterogeneous in what concerns the lithology and soil, while 

flat surfaces are frequently separated by abandoned meanders.  

Test area (Figure 13) covering SC Emiliana West farm has a special particularity consisting in heavy, 

dark, clayey soil type that becomes very solid when wetted. Also, depending on the rainfall regime 

during the season, the groundwater level could increase to near the land surface (0.4 – 4m). These 

aspects influence the NDVI classification results related to irrigated and non-irrigated parcels 

(Figure 14): NDVI has high values outside the irrigated plots while irrigated plots show medium 

values. Therefore, we focused on multi-temporal Sentinel-1 data analysis by applying supervised 

classification on irrigated and non-irrigated plots using as input sigma nought time series. 

Sentinel-1 data were downloaded from the COPERNICUS SCIHUB. Sensor configuration mode 

acquisition is shown in Table 5. 

 
Figure 13 - Banat pilot area: main crops in 2018 and data needs.  
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Figure 14 - NDVI classification: Yellow: bare soils, blue: water, green: non-irrigated areas, red: irrigated areas. 

Sentinel-1 data Characteristics 
Orbit Descending node 

Polarisation VV + VH 

Mode Interferometric Wide – GRD (ground range) 

Incidence angle Ranging from 300 - 400 

Relativ orbit 153 

Table 5 - Sentinel-1 data acquisition configuration. 

A total of 107 Sentinel-1 data covering September 2016 – September 2018 were prepared for 

supervised classification by applying special processing steps like: orbit corrections, radiometric 

calibration, speckle filtering, terrain correction and normalisation. Machine learning algorithms 

results are shown in Table 6. The best results are obtained when VV + VH polarisation is used. 

Machine Learning 
Algorithm 

Crop type Accuracy 

Random forest Sunflower, soybeans, maize, sorghum 0.95 

K-Nearest Neighbor 

Classification
27

 (KNN) 
Sunflower, soybeans, maize, sorghum 0.84 

Minimum Distance Classifier 
(MD) 

Sunflower, soybeans, maize, sorghum 0.93 

Table 6 - Machine learning classification results. 

4.2 Crop evapotranspiration 

EO-derived crop evapotranspiration (maximum) (ETC) is the value of evapotranspiration under 

standard conditions, as defined by FAO56: disease-free, well-fertilized crops, under optimum soil 

                                                           
27Campos, Guilherme O.; Zimek, Arthur; Sander, Jörg; Campello, Ricardo J. G. B.; Micenková, Barbora; Schubert, Erich; Assent, Ira; 
Houle, Michael E. (2016). On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Mining 
and Knowledge Discovery. doi:10.1007/s10618-015-0444-8. ISSN 1384-5810 
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water conditions. It can be derived by using a coefficient-based approach (KC* x ET0; KC*: 

reflectance-based crop coefficient; several approaches can be used for estimating KC* from 

Vegetation Indices, by using basal crop coefficient relationships). 

To calculate ETC, the Crop coefficient-Reference evapotranspiration methodology described in 

the FAO56 manual (Allen et al.1998) was used. More concretely a “single” crop coefficient model 

where the estimation of ETC, in the absence of water stress, is calculated as: 

ETC = KC · ET0 (5) 

where, ET0 is the reference evapotranspiration and KC is the crop coefficient. ET0 is calculated 

from different climatic variables, while KC can be calculated through its linear relationship with 

the NDVI. In this case, the equation used has been the next:  

KC = 1.25 · NDVI + 0.1 (6) 

Thus, from NDVI data, the ETC can be calculated via KC relationship.  

The NIWR and GIWR products are related as follows:  

NIWR = ETC – PP (7) 

GIWR = NIRW/Ԑ (8) 

where, PP is the precipitation and Ԑ is the irrigation efficiency. So, from the ETC we can obtain the 

other products.  

Accumulated ETC calculation in Banat area 

The software used to calculate the accumulated ETC is Tonipbp, developed in UCLM (Albacete, 

Spain). The program allows to accumulate values of ETC pixel by pixel from temporal series of 

NDVI and reference ET (ET0) data during the growing crop as follow: 

KC = 1.25 · NDVI + 0.1        ETC = KC · ET0 (9) 

It is necessary to describe the growing crop cycle to define the period to accumulate the ETC per 

pixel. For the Banat area, the growing cycle was defined for the irrigated crops in 2017: soybeans, 

sunflowers, maize and sorghum.  

The inputs of TONIpbp are: selected time series NDVI (cloud-free), daily ET0, the range of NDVI 

values and the shape (layer) of the area of interest. The software creates daily NDVI values 

interpolating between the dates of NDVI images, applies the correlation NDVI- KC defined above 

and multiplied by the daily ET0 values. In order to capture the growing cycle, it is necessary to 

define the values of NDVI representing the beginning and the end of the crop cycle. In this case, 

it has been established 0.3 NDVI as the green up, the moment when the crop starts the vegetative 

development and 0.45 NDVI as the maturity physiological is reached. So, when one-pixel reaches 
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0.3 of NDVI, TONI will use this date to start to accumulate the ETC, and it will stop in the date 

when the value of NDVI decrease under 0.45. The daily ET0 and precipitation were obtained from 

the weather station of Sannicolau Mare.  

The images used were NDVI Sentinel-2A, Sentinel-2B and Landsat 8 for 2017 cloud free. The 

dates used are summarized in the next list.  

 ndvi3_20170102_S2A_32634_136000T34TDS_02.img 

 ndvi3_20170303_S2A_32634_136000T34TDS_00.img 

 ndvi3_20170402_S2A_32634_136000T34TDS_00.img 

 ndvi3_20170516_landsat8_32634_186028_cc_26_rec.img 

 ndvi3_20170704_S2A_32634_036000T34TDS_00.img 

 ndvi3_20170719_S2B_32634_036000T34TDS_01.img 

 ndvi3_20170808_S2B_32634_036000T34TDS_02.img 

 ndvi3_20170815_S2B_32634_136000T34TDS_00.img 

 ndvi3_20170914_S2B_32634_136000T34TDS_00.img 

 ndvi3_20171002_S2A_32634_036000T34TDS_00.img 

The Figure 15 is an example of the curve described by the evolution of NDVI images values for one 

pixel (red point in the map) in a soybean plot in an irrigated plot of Banat area.  

 

Figure 15 - NDVI evolution for a pixel in a Soybean plot in Banat area in 2017. 

For this pixel, the software starts to accumulate in the 26-05-2017 (0.3 NDVI) and stops in 11-09-

2017. 

0.3 
0.45 
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The final product is the accumulated ETC (mm) during the growing cycle pixel by pixel. This 

product is represented in the next figure (Figure 16, provided in .img format). Notice the south 

plots are incomplete due to the extension of the satellite Image does not cover the whole plot. 

 
Figure 16 - Evapotranspiration accumulated at the end of the crop growing cycle. 

Every pixel value of the ETC map shows the crop evapotranspiration in millimetres, mm (l/m2), 

usually understood as the crop water requirements (CWR).  This ETC is the accumulated over the 

growing season Units are mm for the total CWR growing cycle (mm(year)). 

ETc average (mm): Once we have the ETC value pixel by pixel for the whole growing cycle in a 

raster format, the zonal statistic has been run in QGIS program. Previously, it has been applied a 

buffer of minus 30 meters to the original vector layer where the boundaries of the plots are 

defined in order to avoid the boundary effects of the images. Finally, it has been obtained the ETC 

average per plot.  

The value it has been provided for every polygon, in the attribute table of the original vector layer 

(column called ETc_lbl). 

Figure 17 shows the map with assigned values of ETC. 
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Figure 17 - Average of Accumulated Evapotranspiration per plot. 

4.3 Net Irrigation Water Requirements (mm) NIWR = ETc-PP 

PP is the precipitation during the growing cycle. In order to accumulate the precipitation during 

the growing cycle, the dates of the beginning of the cycle (0.3 NDVI) and the end (0.45 NDVI) have 

been established studying groups of plots and crops which have similar cycles. Finally, seven 

groups were defined (Table 7). Figure 18 shows the map with assigned values of precipitation. 

Group 
Precipitation 

(mm) 
Start. Date Finish. Date 

Sorghum 84.4 21/05/2017 16/08/2017 

Corn 89.6 16/05/2017 24/08/2017 

Soybeans1 86.3 15/03/2017 03/09/2017 

Soybeans2 125.3 04/05/2017 03/09/2017 

Soybeans3 125.3 26/04/2017 03/09/2017 

Soybean4 89.6 16/05/2017 26/08/2017 

Sunflowers 82 23/05/2017 19/08/2017 

Table 7 - Groups of crops and plots associated by their similarity of the length of their growing cycles. 
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Figure 18 - Groups of crops and plots associated by their similarity of the length of their growing cycles. 

The value it has been provided for every polygon, in the attribute table of the original vector layer 

(column called NIWR_lbl). Figure 19 shows the map with assigned values of NIWR. 

 
Figure 19 - Net Irrigation Water Requirement Average per plot. 
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4.4 Gross Irrigation Water Requirements (mm) (NIWR/Ԑ) 

Derived from applying an efficiency irrigation coefficient to the net irrigation water requirements 

NIWR. In this case it has been used 0.85 as a regular value but we need to keep in mind that these 

coefficients are very specific parameters depending mainly on the type of irrigation system and 

on the effectiveness of the application of the water (open channels, pumping, sprinkling, dripping, 

irrigating climate conditions, etc.).  

The value it has been provided for every polygon, in the attribute table of the original vector layer 

(column called GIWR_lbl). Figure 20 shows the map with assigned values of precipitation.  

 
Figure 20 - Gross Irrigation Water Requirement Average per plot. 

These results are validated by SC Emiliana West Rom, also providing the information required in 

the DIANA project like: parcel, crop planning and irrigation requirement vs irrigation estimation. 
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5 Diana Benchmark exercise 

5.1 OPTRAM 

Background 

Sadeghi et al., (2017)28 proposed a physical “OPtical TRApezoid Model” (OPTRAM) to remote 

sensing of soil moisture (SM) EO data. 

OPTRAM is based on the pixel distribution within the shortwave infrared transformed reflectance 

(STR)-Normalized Difference Vegetation Index (NDVI) space (STR-NDVI space), defined as: 

𝑆𝑇𝑅 =
(1 − 𝑅𝑆𝑊𝐼𝑅)2

2𝑅𝑆𝑊𝐼𝑅
 (10) 

𝑊 =
θ

θ𝑠
=

𝑖𝑑 + 𝑠𝑑 ∙ 𝑁𝐷𝑉𝐼 − 𝑆𝑇𝑅

𝑖𝑑 − 𝑖𝑤 + (𝑠𝑑 − 𝑠𝑤) ∙ 𝑁𝐷𝑉𝐼
 (11) 

𝑆𝑇𝑅𝑑 = 𝑖𝑑 + 𝑠𝑑 ∙ 𝑁𝐷𝑉𝐼 (12) 

𝑆𝑇𝑅𝑤 = 𝑖𝑤 + 𝑠𝑤 ∙ 𝑁𝐷𝑉𝐼 (13) 

𝑊 =
𝑆𝑇𝑅 − 𝑆𝑇𝑅𝑑

𝑆𝑇𝑅𝑤 − 𝑆𝑇𝑅𝑑
 (14) 

 

Figure 21 – Sketch illustrating parameters of the optical trapezoid model. 

The advantage of the STR-θ space over the conventional triangle/trapezoid approach (LST-θ 

space) (Carlson et al., 1994)29 is that it only requires optical data and it can be universally 

                                                           
28 Sadeghi, M., Babaeian, E., Tuller, M., Jones, S. B. (2017). The optical trapezoid model: A novel approach to remote sensing of soil 
moisture applied to Sentinel-2 and Landsat-8 observations. Remote sensing of environment, 198, 52-68. 
29 Carlson, T. N., Gillies, R. R., Perry, E. M. (1994). A method to make use of thermal infrared temperature and NDVI measurements 
to infer surface soil water content and fractional vegetation cover. Remote sensing reviews, 9(1-2), 161-173. 
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parameterised for a given location because STR-θ is not affected by ambient atmospheric factors. 

However, the STR-θ space is sensitive to oversaturated pixels (due to ponding water), and then, 

occasionally, the index W assumes values higher than 1 (Sadeghi et al., 2017)28. 

This section aims to show the testing of the optical trapezoidal model (OPTRAM) for the remote 

sensing monitoring of soil moisture, at high resolution, for detection of irrigated crop. 

Satellite imagery (EO data) 

To obtain the Sentinel-2 data for the study area, the Copernicus Open Access Hub (previously 

known as Sentinels Scientific Data Hub) was considered. A selection of 44 Sentinel-2 was chosen, 

according to the following criteria: cloud-free images for the area of interest; and 2A processing 

level, corrected for Bottom Of Atmosphere (BOA) reflectance values. Images were selected into 

the time-period of 3 January – 30 September 2018. To compute the NDVI the band 4 and 8 were 

selected, while the STR index (eq. 10) computation was performed using the band 12, opportunely 

resampled at 10 m. 

Test sites 

The OPTRAM model was evaluated for some parcels located in the Presenzano district (Figure 22). 

For each considered parcel, with tree crops, the Sannio Alifano Consorzio staff provided the 

volume and the irrigation time, in addition to other information reported in Table 8. 

 

Figure 22 – Selected parcels and their location in the Presenzano district. 
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ID Plot Crop type 
Plot dimension 

(ha) 
Hydrants ID Irrigation scheduling EO Data 

2125 
Peach 

1.8 
1082 

Volume & Irrigation Time Sentinel-2 

2126 1.9 

2127 
Hazelnut 

4.9 
1145 

2 6.4 

2131 Apple 4.9 552, 548, 547 

2132 Peach 2.4 1219 

Table 8 - Data related to of parcel holding irrigation water rights (Figure 24). 

Following are reported more details, about a first test executed on the parcels with hazelnut trees 

(Figure 23), irrigated from 26 July to 2 August.  

 

Figure 23 - Map of parcel holding irrigation water rights (halzenut). 

Results 

In this exercise, for a first analysis, the pixel distributions of the NDVI-STR were plotted, 

considering the S2 images collecting during the irrigation period (Figure 24.), but to parameterise 

the OPTRAM model, all the 44 S2 imagery were considered. In detail, the wet edge lines 

(continuous line) and dry edge (dash-dot line) were identified by a visual inspection and provided 
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the values of slope and intercepts for the dry edge (sd and id) and for wet edge (sw and iw) 

respectively equal to sd=2; id=0; iw=0 and sw=9.5 (Figure 25). 

Following the eq. 14, for each acquisition the soil moisture index (W) was computed. 

Subsequently, the time series of the W index was compared with rainfall and irrigation scheduling 

for the considered parcels (Figure 26 and 27). 

 

Figure 24 – Scatter plot of STR-NDVI space related to plots 2 and 2127, for aggregate time series (from 20 July to 2 

August) and for single Sentinel-2 acquisitions. 

  

Figure 25 - Scatter plot of STR-NDVI space to plots 2 and 2127, for aggregate time series (from 3 January to 30 

September). 
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Figure 26 - Time series of soil moisture index (W) (left), and rainfall (CFM station) (right), related to plots 2 and 2127 

for a number of 44 acquisitions of Sentinel-2. 

 

Figure 27 – a) Time series of soil moisture index (W), b) CFM Rainfall (in blue) and irrigation water volume (in green). 
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5.2 TOTRAM 

The Thermal-Optical TRApezioid Model (TOTRAM) is one of the most popular approach used to 

estimated soil moisture from EO data. Also called “trapezoid” or “triangle” model is based on the 

pixel distribution of the Land Surface Temperature (LST) and NDVI space. 

The TOTRAM model was applied in the area of Tarazona de la Mancha (Mancha Oriental, Spain) 

(Figure 12). Particularly, the goodness of this approach was tested taking into account typical 

Mediterranean permanent crops, usually under drip irrigation and characterised by a large 

fraction of bare soil. In detail, the test was executed on tree crops like vine, almond and olive. 

In this exercise, the pixel distribution of the thermal and optical data was obtained from the 

LANDSAT 8 OLI-TIRS images acquired from April to August 2018. 

The dates used are summarised in the next list: 

 April, 19th 

 July, 17th 

 July, 24th, 

 August, 2nd, 

 August, 9th, 

 August, 24th 
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5.3 TU WIEN algorithm 

Radar signal modelling 

Change detection method developed by Wagner for soil moisture estimation at the global scale 

(1 Km resolution) using SAR scatterometer sensor was used for modelling backscattered radar 

signal over wheat and rapeseed30,31. This method considers temporal stability of the spatial soil 

moisture pattern supposing soil roughness and vegetation conditions are not changed when a 

dense time series of SAR data is available. In a particular day, soil moisture is computing by 

comparing wetting and drying trend for radar backscattered signal using historically lowest and 

highest backscattered values as references (eq.15 – eq.17): 

       tSmt sdry

o  3030, 0   
(15) 

𝑆 =  𝜎𝑤𝑒𝑡 −  𝜎𝑑𝑟𝑦 (16) 

𝑆𝑀𝑡 =
𝜎0(𝑡) − 𝜎𝑑𝑟𝑦

0 (30)

𝜎𝑤𝑒𝑡
0 (30) −  𝜎𝑑𝑟𝑦

0 (30)
 

(17) 

where, 

 S is radar sensitivity,  

 𝛽 is slope (local incidence angle), 

  tms is the surface soil moisture normalised at an incidence angle of 30˚. 

As a result, surface soil moisture is expressed in volumetric units (%) and scaled between zero 

and one. This method is applied only for positive temperature values when the soil is not 

covered with snow or is frozen.  

Soil moisture retrieval 

Soil moisture estimation implies calibration of the change detection method whose main steps 

are described as follows. 

Step 1. Normalising the backscattering coefficients. To adjust local incidence variation during 

acquisition, VV and VH-polarized backscattered coefficients are normalised by using Lambert low 

from optics32: 

𝜎𝜃𝑟𝑒𝑓

0 = 𝜎𝜃
0

𝑐𝑜𝑠2𝜃𝑟𝑒𝑓

𝑐𝑜𝑠2𝜃
 

(18) 

where, 

 𝜎𝜃𝑟𝑒𝑓

0  and 𝜎𝜃
0 are backscattering coefficients observed at incidences angles 𝜃 and 𝜃𝑟𝑒𝑓. As is 

                                                           
30 Wagner, W. L. (1999). A study of vegetation cover effects on ERS scatterometer data. IEEE Transactions on Geoscience and Remote 
Sensing, 37 (2): 938-948. 
31Wagner, W. P. F. (2008). Temporal stability of soil moisture and radar backscatter observed by the Advanced Synthetic Aperture 
Radar (ASAR). Sensors, (8): 1174-1197. 
32Topouzelis, K. S. (2016). Incidence angle normalization of Wide Swath SAR data for oceanographic applications. Open Geosciences, 

8(1), 450-464. 
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mentioned earlier, the incidence angle of Sentinel-1 data is set to 39˚.  

Step 2. Determine dry and wet references. After normalization and meteorological data analysis, 

the dry and wet references are determined by statistical methods of noise analysis.  

Step 3. Calculate surface soil moisture. Soil moisture is estimated by applying Eq. 17, comparing 

reference backscattered signal with dry and wet references values.  

Step 4. Analyse the vegetation contribution to the soil moisture. The estimated soil moisture 

content values are used to model vegetation contribution and to validate the estimated results 

since no measurements have been done in the test area. 

Surface soil moisture estimation 

Investigations were focused on establishing the dry and wet references based on seasonal 

variation which reflect vegetation phenology. This variation can induce backscatter changes that 

required vegetation correction. Sentinel-1 images acquired between September 2016 and 

February 2017 were analysed separately to see the radar temporal response during the seeding 

and dormancy crop stages in correlation with precipitation and air temperature values (Figure 

28). 

 

Figure 28 - Thermic regime in Banat pilot area. Negative values have not been considered in modelling (it means snow 

cover and frozen land surface that has negative influences on soil moisture estimation). 

Investigations were focused on establishing the dry and wet references based on seasonal 

variation, which reflect vegetation phenology. This variation can induce backscatter changes that 

required vegetation correction. Thus, the change detection algorithm was used to scale dry and 

wet references of the backscattering coefficients over the whole SAR datasets in order to estimate 

surface soil moisture (Figure 29). 
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Figure 29 - Dry and wet reference characteristics to Banat pilot area. 

 

Temporal evolution of the vegetation indices like NDVI and LAI was investigated in order to 

determine the contribution from soil and vegetation in the radar backscatter response and to 

validate the soil moisture results. Since no a priory information is considered, the performance of 

the surface soil moisture estimation is assessed as a function of LAI, NDVI and SAR acquisition far 

from a rainy episode or in the context of high air temperature recorded. The result is depicted in 

Figure 30. 
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Figure 30 - Surface soil moisture for Soybeans area 1. Good correlation is observed between vegetation indices and 

estimated surface soil moisture (0.85 for LAI and 0.66 for NDVI). 

 

Figure 31 - Surface soil moisture for Soybeans area 2. Good correlation is observed between vegetation indices and 

estimated surface soil moisture (0.85 for NDVI and 0.76 for LAI). 
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Figure 32 - Surface soil moisture for Soybeans area 3. Good correlation is observed between vegetation indices and 

estimated surface soil moisture (0.85 for LAI and 0.79 for NDVI). 

 

Figure 33 - Surface soil moisture for maize. Good correlation is observed between vegetation indices and estimated 

surface soil moisture (0.8 for LAI and 0.45 for NDVI). 
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Figure 34 - Surface soil moisture for sorghum. Good correlation is observed between vegetation indices and estimated 

surface soil moisture (0.68 for LAI and 0.72 for NDVI). 

 

Figure 35 - Surface soil moisture for sunflower. Good correlation is observed between vegetation indices and 

estimated surface soil moisture (0.89 for LAI and 0.78 for NDVI). 
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These estimates could be validated using crossing methods like OPTRAM and TOTRAM since in-

situ measurements require data to be collected at the same time with satellite passage.  

Sentinel-1 data has been processing in ENVI SarScape 5.4 in order to reduce bias noise induced by 

the Sentinel-1 sensor. Backscattering coefficients calculated with ESA SNAP open source software 

have a bias of - 3dB comparing with ENVI SarScape. 
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6 Verification of the Meteorological Products  

6.1 Introduction 

Forecast verification is the process and practice of determining the quality of forecasts in the 

spatial and temporal domain33. This section describes the methodology that followed to verify 

weather forecast fields and the gridded observational data produced by the statistical and 

dynamical downscaling processes during the project’s 1st pilot phase. 

6.2 Data and Methods 

For the verification of the meteorological parameters, the MET34 code (Model Evaluation Tools) 

version 5.2 was used. MET is a collection of functions written in C that was developed by the 

Developmental Testbed Center to provide to the atmospheric community highly configurable and 

state-of-the-art verification tools. These tools are based on a variety of verification techniques, 

including standard verification scores for gridded and point statistics as well as more advanced 

statistical measures, such as neighbourhood, object-based and intensity-scale decomposition 

approaches for spatial statistics. The observational data that used against the meteorological 

products were coming from the MADIS35 system.  

The meteorological products of the temperature and humidity at 2 m height, the wind speed at 

10m high, the daily accumulated precipitation and the occurrence of the precipitation event were 

compared against observational data from surface weather stations. The occurrence of a 

precipitation event was treated as a categorical variable, while all the other atmospheric fields 

were treated as continuous variables. To match the meteorological products and observations on 

the horizontal plane inverse distance weighted interpolation of 9 points was used for 

temperature, humidity and wind speed, while nearest neighbour interpolation was applied for 

precipitation.                 

 

                                                           
33 Murphy, Allan H., and Robert L. Winkler. (1987). A general framework for forecast verification. Monthly Weather Review. 115.7 
(1987): 1330-1338. 

34 http://www.dtcenter.org/met/users/index.php 

35 https://madis.noaa.gov/ 

http://www.dtcenter.org/met/users/index.php
https://madis.noaa.gov/
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6.3 Statistical Measures of Verification of Continuous Variables  

The statistical measures that used to verify the continuous atmospheric fields of temperature and 

humidity at 2m high, wind speed and direction at 10m high, and the amount of daily precipitation 

are the following: 

 Mean Absolute Error (MAE): Mean absolute error is a measure of the absolute error 

between forecast and observation. MAE is less influenced by large errors and does not 

depend on the mean error. A perfect forecast would have MAE=0. 

 Mean Error (ME): Mean error is a measure of overall bias of the forecast. An identical 

forecast would have ME=0. 

Statistical Measures of Verification of Categorical Variables 

The statistical measures that were used to verify discontinuous atmospheric fields, like 

precipitation are describing below: 

 Probability of Detection (POD): Probability of detection is the fraction of the events 

where correctly forecasted to occur. POD ranges between 0 and 1, and the best forecast 

has a POD value equal to 1. 

 False Alarm Rate (FAR): False alarm rate is the proportion of forecasts of the event 

occurring for which the event did not occur. FAR ranges between 0 and 1 and the best 

forecast have a FAR value equal to 0. 

 Equitable Threat Score (ETS): Equitable threat score is based on CSI, corrected for the 

numbers of hits that would be expected by chance. ETS ranges from -1/3 to 1. The perfect 

forecast would have an ETS equal to 1, and a no skill forecast would have an ETS equal to 

0. 

Results for the Continuous Variables 

Lead Time (hours) ME ME_BCL ME_BCU MAE MAE_BCL MAE_BCU 

12 1.558 -0.684 3.693 8.989 7.787 10.226 

24 2.792 1.350 4.409 8.867 7.998 9.839 

36 9.666 7.784 11.354 12.356 10.872 13.872 

48 11.470 9.656 13.355 13.861 12.489 15.274 

60 1.639 -0.547 3.734 8.134 6.924 9.395 

72 2.937 1.450 4.553 9.047 8.181 10.002 

84 9.040 6.938 10.881 12.052 10.684 13.423 

96 10.513 8.725 12.432 13.059 11.636 14.492 

108 0.026 -2.478 2.299 9.352 7.854 10.789 

120 2.108 0.220 3.914 9.596 8.565 10.655 

132 7.886 6.024 9.823 11.673 10.205 13.199 

144 10.824 8.997 12.676 13.014 11.615 14.393 

156 -1.764 -4.580 0.896 10.349 8.627 12.127 

168 4.430 -4.218 11.591 12.841 7.604 18.736 

Table 9 - Relative Humidity at 2m Height (All Pilots). 
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Lead Time (hours) ME ME_BCL ME_BCU MAE MAE_BCL MAE_BCU 

12 0.086 -0.243 0.394 1.374 1.206 1.551 

24 0.310 0.118 0.516 1.057 0.937 1.178 

36 -1.074 -1.366 -0.779 1.670 1.486 1.885 

48 -1.051 -1.294 -0.800 1.500 1.321 1.693 

60 0.369 0.007 0.703 1.474 1.276 1.678 

72 0.333 0.122 0.525 1.129 1.005 1.266 

84 -0.812 -1.120 -0.520 1.611 1.414 1.812 

96 -0.803 -1.056 -0.527 1.485 1.311 1.656 

108 0.653 0.318 1.029 1.528 1.311 1.760 

120 0.657 0.448 0.865 1.259 1.116 1.404 

132 -0.408 -0.724 -0.078 1.617 1.413 1.845 

144 -0.559 -0.840 -0.297 1.431 1.235 1.616 

156 0.927 0.561 1.340 1.690 1.434 1.962 

168 0.893 0.650 1.151 1.450 1.274 1.619 

Table 10 - Temperature at 2m Height (All pilots). 

Lead Time (hours) ME ME_BCL ME_BCU MAE MAE_BCL MAE_BCU 

12 1.255 0.941 1.604 1.681 1.453 1.925 

24 1.123 0.834 1.422 1.800 1.596 1.996 

36 0.923 0.595 1.266 1.855 1.625 2.091 

48 1.173 0.816 1.524 1.957 1.684 2.233 

60 1.455 1.097 1.801 1.872 1.615 2.149 

72 1.429 1.092 1.773 2.118 1.894 2.365 

84 1.346 0.999 1.707 2.172 1.941 2.411 

96 1.244 0.822 1.648 2.088 1.805 2.398 

108 1.576 1.186 1.940 1.812 1.504 2.148 

120 1.527 1.180 1.870 2.198 1.958 2.442 

132 1.300 0.926 1.717 2.163 1.900 2.446 

144 1.030 0.620 1.389 1.962 1.719 2.225 

156 1.527 1.156 1.931 1.908 1.624 2.230 

168 1.706 1.379 2.053 2.340 2.097 2.620 

Table 11 - Wind Speed at 10m Height (All pilots) 
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Lead Time (hours) ME ME_BCL ME_BCU MAE MAE_BCL MAE_BCU 

12 -13.871 -33.155 5.725 78.054 66.103 88.798 

24 -4.608 -18.475 9.837 73.998 65.894 82.311 

36 -24.428 -44.040 -4.903 97.538 85.264 110.088 

48 -17.070 -33.671 1.233 89.558 78.570 100.931 

60 -47.755 -68.621 -27.251 91.992 75.243 107.672 

72 -27.691 -43.531 -12.404 88.220 78.250 97.968 

84 -59.218 -82.263 -37.047 128.246 112.502 143.962 

96 -15.734 -34.868 1.942 94.524 82.359 106.333 

108 -67.598 -91.806 -42.770 106.212 89.615 124.668 

120 -47.160 -62.666 -32.135 89.631 80.008 99.363 

132 -80.150 -101.550 -59.200 130.566 116.889 145.161 

144 -23.094 -42.211 -5.299 92.394 81.067 104.963 

156 -90.272 -114.244 -68.040 113.794 96.046 132.418 

168 -51.924 -71.125 -32.222 109.461 96.343 123.235 

Table 12 - Mean Sea Level Pressure (Pa) (All pilots). 

Results of the Categorical Variables 

Lead Time (hours) PODY FAR ETS 

24 0.737 0.650 0.234 

48 0.909 0.608 0.273 

72 0.889 0.686 0.222 

96 0.818 0.633 0.234 

120 0.889 0.600 0.311 

144 0.810 0.685 0.185 

168 0.722 0.667 0.222 

Table 13 - Precipitation (All pilots). 
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7 Annexes 

7.1 Background of the ET comparison performed in the Italian Pilot area. 

Comparison at pixel scale between ET estimated by two different algorithms based on the logic 

of P-M equation: the global MODerate Resolution Imaging Spectroradiometer (MODIS) ET 

product (MOD16 ET) and the “Analytical Approach” (D’Urso et al., 2006)36. Both of them use as 

input a combination of daily meteorological data and remotely sensed vegetation properties and 

not require thermal infrared remote sensing of Land Surface Temperature (LST) as input data. 

However, they have been developed for different purpose and applications and usually use 

different sources of data input. MOD16 ET is a global product and provides key information useful 

to water resource management and to calculate regional water and energy balance and soil water 

status from the regional to the global scale (Mu et al., 2007)37. Due to its long-term data, it allows 

to quantify the effects of changes in climate, land use and ecosystems disturbances on regional 

water resources and land surface energy change. MODIS ET product was validated worldwide with 

observed latent heat flux for 46 field-based eddy covariance towers, from 232 global watersheds 

for each of the seven biome types (Mu et al., 2011)38. MOD16 ET algorithm uses as input 

vegetation properties (LAI and albedo) derived from the same MODIS sensors. The Analytical 

approach is an operative method to estimate the ET at moderate-high spatial resolution It exploits 

agrometeorological data measured in situ and the crop parameters (crop height - hc, albedo – α 

- and Leaf Area Index - LAI) estimated from remotely sensed data. It is a consolidated method 

applied in numerous studies (Akdim et al., 2014)39 and in numerous satellite-based irrigation 

advisory services (Vuolo et al., 2015)40 thanks to its applicability in areas with limited field 

measurements and without knowledge of crop type. However, it has only site-specific validation. 

The main goal of this task is to compare the ET retrieved by these two different methods by using 

as input the same vegetation parameters retrieved by different satellites (LAI and albedo MODIS 

for MOD16 ET products and LAI and albedo Sentinel-2 for ETp Sentinel-2) during the irrigation 

                                                           
36 D'Urso, G., Calera Belmonte, C. (2006). Operative approaches to determine Crop Water Requirements from earth observation data: 

methodologies and applications, AIP Conference Proceedings (2006). 

37 Mu, Q., Heinsch, F., Zhao, M. end Running, S. (2007). Development of a global evapotranspiration algorithm based on MODIS and 

global meteorology data. Remote sensing of Environment, 519-536 (2007). 
38 Mu, Q., Zhao, M., Running, S. (2011). Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sensing 
of Environment, 1781-1800, (2011). 
39 Akdim, N., Alfieri, S., Habib, A., Choukri, A. (2014). Monitoring of irrigation schemes by remote sensing: phenology versus retrieval 
of biophysical variables. Remote Sensing, 5815-5851, (2014). 
40 Vuolo, F., D’Urso, G., De Michele, C., Bianchi, B., Cutting, M. (2015). Satellite-based irrigation advisory services: A common tool for 
different experiences from Europe to Australia. Agricultural water management, 82-95 (2015). 
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season (April to September) of the year 2018. The evaluation is carried out on the Italian Pilot 

area “Sannio Alifano” irrigation district, characterised by an extremely heterogeneous and 

fragmented landscape and a typically Mediterranean climate.   

MOD16 algorithm 

The MODIS sensor resides aboard the Terra and Aqua platforms, offering a view of the earth’s 

surface every 1-2 day. Scientists from a variety of disciplines, including oceanography, biology, 

use standard MODIS products and atmospheric science and are useful to both global change 

research and resource management. The MOD16 algorithm estimates the total daily ET as the 

sum of evaporation from the wet canopy surface, the transpiration from the dry canopy surface 

and the evaporation from the soil surface. The total daily latent heat flux (λE, [Wm-2]) and the 

potential ET (λEpot) are calculated as the sum of the evaporation from the wet canopy surface 

(λEwet,c), the transpiration from the dry canopy (λEtrans) and the evaporation from the soil (λEsoil):  

𝜆𝐸 = 𝜆𝐸𝑤𝑒𝑡,𝑐 + 𝜆𝐸𝑡𝑟𝑎𝑛𝑠 + 𝜆𝐸𝑠𝑜𝑖𝑙  (19) 

𝜆𝐸𝑝𝑜𝑡 = 𝜆𝐸𝑤𝑒𝑡,𝑐 + 𝜆𝐸𝑝𝑜𝑡,𝑡𝑟𝑎𝑛𝑠 + 𝜆𝐸𝑤𝑒𝑡,𝑠𝑜𝑖𝑙 + 𝜆𝐸𝑝𝑜𝑡,𝑠𝑜𝑖𝑙  (20) 

 

Actual plant transpiration estimation is based on the logic of the Penman-Monteith (Monteith, 

1965)41 equation, while the potential is calculated following the Priestley-Taylor method 

(Priestley et al., 1972)42: 

𝜆𝐸𝑡𝑟𝑎𝑛𝑠 =
𝑠𝐴 + 𝜌𝐶𝑝(𝑒𝑠𝑎𝑡 − 𝑒)/𝑟𝑎

𝑠 + 𝛾(1 +
𝑟𝑠
𝑟𝑎

)
 (21) 

𝜆𝐸𝑝𝑜𝑡,𝑡𝑟𝑎𝑛𝑠 =
1.26 𝑠𝐴𝑐

𝑠 + 𝛾
 (22) 

 

where, s [Pa K-1] is the slope of the curve relating saturated vapour pressure (esat, [Pa]) to 

temperature [K]; A [W m-1] is the available radiative energy portioned between sensible and latent 

heat fluxes on land surface and Ac is the part of A allocated to the canopy; ρ [Kg m-3] is the air 

density; Cp [J Kg-1 K-1] is the specific heat of air; γ [Pa K-1] is the psychrometric constant and ra and 

rs [s m-1] are respectively the aerodynamic and the surface resistance. The aerodynamic resistance 

                                                           
41 Monteith, J. Evaporation and environment. Symposia of the Society for Experimental Biology (1965). 
42 Priestley, C., Taylor, R. (1972). On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly 
weather review (1972). 
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is calculated following the Biome-BGC model (Thornton, 1998)43 as parallel resistance to 

conductive (biome dependent) and radiative (function of the air temperature) resistance and 

therefore not includes the effects of the wind speed. The surface resistance is the effective 

resistance to evaporation from land surface or transpiration from vegetation canopy. In the case 

of bare soil, it is not calculated, while the canopy resistance is estimated as:  

𝑟𝑠,𝑐𝑎𝑛𝑜𝑝𝑦 =
1

[𝐶𝐿𝑚(𝑇𝑚𝑖𝑛)𝑚(𝑉𝑃𝐷)𝐿𝐴𝐼]
 (23) 

where, CL [m s-1] is the potential stomatal conductance per unit leaf area when all environmental 

parameters are at the optimum levels (full stomatal opening condition), and m(Tmin) and m(VDP) 

are two multipliers that limit the stomatal conductance depending on minimum air temperature 

and vapour pressure deficit (VPD, [Pa]). 

 

The “Analytical approach” 

The “Analytical Approach” (D’Urso and Menenti, 1995)22 is also referred in the Food and 

Agriculture Organization (FAO) in the Irrigation and Drainage Paper No. 56 (Allen et al., 1998)23 as 

the “one-step” or “direct” approach. The FAO-56 did not provide specific means for estimating 

crop ET (ETc) from satellite imagery. However, since it was published, substantial progress and 

applications have been obtained in ETc estimation by remote sensing (RS) (Pereira et al., 2015)44. 

The Analytical Approach is an operative approach for mapping the ETc by using ground-based 

standard meteorological data (solar radiation Rs, wind speed U, air temperature T and humidity 

RH) and crop-specific vegetation parameters obtained from RS: the surface albedo (α), the leaf 

area index (LAI), the crop height (hc) and the stomatal resistance (r). The calculation is performed 

at the pixel level, as shown in the following equation: 

𝐸𝑇 = 𝑓(𝛼, 𝐿𝐴𝐼, ℎ𝑐 , 𝑟, 𝑅𝑠, 𝑈, 𝑇, 𝑅𝐻) =
𝑠(𝑅𝑛 − 𝐺) + 𝜌𝐶𝑝(𝑒𝑠𝑎𝑡 − 𝑒)/𝑟𝑎

𝑠 + 𝛾(1 +
𝑟𝑠
𝑟𝑎

)
 (24) 

 

where, the terms Rn-G represents the available radiative energy. For the estimation of the 

potential ET (ETpanalytical) were used the LAI and Albedo retrieved from the Sentinel-2. For the 

remains, two crop parameters (r and hc) a simplified estimation were introduced. The stomatal 

                                                           
43 Thornton, P. (1998). Regional ecosystem simulation: combining surface-and satellite-based observations to study linkages between 
terrestrial energy and mass budgets. Graduate Student Theses, Dissertations, Professional Papers. 10519. 
https://scholarworks.umt.edu./etd/10519. 
44 Pereira, L., Allen, R., Smith, M., Raesd, D. (2015). Crop evapotranspiration estimation with FAO56: Past and future. Agricultural 
Water Management, 147, 4-20. 
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resistance describes the average resistance of vapour flow through an individual well-illuminated 

leaf. This resistance is crop specific and differs among crop varieties and crop management. 

Moreover, it is also influenced by climate and water availability. Thus, estimating the stomatal 

resistance is one of the major complicated issues in the ET estimation, and the information 

available in the literature is often oriented toward physiological or eco-physiological studies. In 

the procedure proposed by D’Urso et al. (2006)36 the ET estimation was performed assuming that 

the canopy resistance is at the minimum value (r=70 ms-1). Therefore, the estimated ET represents 

the maximum value at “potential condition” from a well-watered and diseases free crop during 

the active growing stage. 

The crop height, together with the LAI, influences the aerodynamic proprieties of vegetation 

canopy. It is strictly related to the crop type and the estimation of the crop height, D’Urso et al. 

(2006)36 suggests using a mean crop height (constant) value. Later studies conducted in semi-arid 

areas confirm this assumption: Aghdasi (2010)45 demonstrates that a percentage change of 50% 

in hc corresponds to a variation of the order of 5% of ET. Therefore, in this contest was used a 

constant value of 0.5 m, valid for the Mediterranean climatic conditions [Petropoulos et al., 

2018)46. This last assumption makes it possible to assess the ET also without a previous land cover 

classification in term of crop height. 

Satellite data 

In the present task, MODIS ET product and Sentinel-2 data input (LAI and albedo) were used. For 

MODIS ET product were analysed 24 images. For Sentinel-2 were analysed 47 images, used to 

derive LAI and albedo product for ETp calculation. ETp was calculated at the pixel level (10m) and 

daily time step, subsequently aggregate at MODIS time step (8-days) and spatial resolution (500 

m) during the irrigation season 2018. Observations from the MODIS sensors are used to derive 

operationally global land surface evapotranspiration product (MOD 16) on 8-day (MYD16A2). The 

8-day composite product (Collection 6) is the improved level 4 MODIS land data product 

computed globally every day at 500 meters spatial resolution. The MODIS ET algorithm, following 

a technique proposed by Mu et al. (2007)37, runs at daily basis and uses as input a combination of 

daily global meteorological data and remotely sensed vegetation property dynamics (Cleugh et 

                                                           
45 Aghdasi, F., Sharifi, M., Van der Tol, C. (2010). Assessment of crop water requirement methods for annual agricultural water 
allocation planning. EGU General Assembly Conference Abstracts. Vol. (12), 2010. 
46 Petropoulos, G., Srivastava, P., Piles, M. Pearson, S. (2018). Earth Observation-Based Operational Estimation of Soil Moisture and 

Evapotranspiration for Agricultural Crops in Support of Sustainable Water Management. Sustainability, 10.1, 2018, 181. 
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al., 2007)47: the albedo (MCD43A3) and the MODIS Leaf Area Index/FPAR (MOD15A2H). While 

the algorithm runs on a daily basis, it assumes that LAI and albedo do not vary during the 

compositing period. The daily meteorological data are provided by NASA’s Global Modeling and 

Assimilation Office (GMAO). These data are produced every six hours using a global circulation 

model and both ground and satellite-based observations. They are distributed at the spatial 

resolution of 0.5° x 0.6° and hence are spatially smoothed to 0.5 km MODIS pixel level using a 

cosine function for the spatial data interpolation. Provided in the MOD16A2 product, there are 

layers for composited Evapotranspiration (ET), Latent Heat Flux (LE), Potential ET (PET) and 

Potential LE (PLE) along with a quality control layer (QC). The QC data layer directly inherits the 

QC data field from the corresponding LAI QC of the same 8-day and denotes if filled data input 

were used (Mu et al., 2007)37. The pixel values for the two Evapotranspiration layers (ET & PET) 

are the sum of all eight days within the composite period, and the pixel values for the two Latent 

Heat layers (LE & PLE) are the average of all eight days within the composite period. In this contest 

were used only the 8-day ET and PET layers.  

Meteorological data 

For this task was used ERA-Interim dataset. ERA-Interim is a dataset, showing the results of a 

global climate reanalysis from 1979 to date.  ERA stands for 'ECMWF Re-Analysis' and refers to a 

series of research projects at ECMWF which produced various datasets (ERA-Interim, ERA-40, etc). 

ERA-Interim "runs" in near real time, data is published with a few months delay. The NWP system 

blends, or assimilates observations with a previous forecast to obtain the best fit for both. The 

result of this blending is called an analysis and is the starting point for the next forecast. In this 

manner, data is produced at increasingly later times. Analysed data is described as instantaneous, 

though it does represent an average over the model time step (30 minutes for ERA-Interim). 

Depending on the parameter, forecast data in ERA-Interim is either instantaneous or accumulated 

from the beginning of the forecast (twice daily forecasts starting at 00 and 12 UTC). Parameters 

such as precipitation and radiation are accumulated. The ERA-Interim dataset contains 

atmospheric and surface parameters: 6-hourly atmospheric fields on model levels, pressure 

levels, potential temperature and potential vorticity; 3-hourly surface fields and daily vertical 

integrals; monthly averages of daily means; monthly synoptic averages at 0 UTC, 6 UTC, 12 UTC, 

18 UTC. The temporal coverage is from 1 January 1979 to present; the spatial coverage is global; 

                                                           
47 Cleugh, H., Leuning, R., Mu, Q., Running, S. (2007). Regional evaporation estimates from flux tower and MODIS satellite data. 
Remote Sensing of Environment, 2007, 106.3: 285-304. 
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the native horizontal resolution is ~80 km. The ERA-Interim dataset contains analyses (four times 

per day, at 00:00, 06:00, 12:00 and 18:00), as well as forecasts (from 00:00 and 12:00, with 3, 6, 

9, and 12-hour steps, and more, into the future). Variables of the ERA-Interim data for the 

calculation of the ETp is reported in the Table below. 

Short name Variables units 
SP Surface pressure (Pa) 

Tp Total Precipitation (m) 

SSRD Surface solar radiation downwards (W m-2 s) 

STR Surface thermal radiation (W m-2 s) 

T2 2-meter temperature (K) 

D2 2 meter dewpoint temperature (K) 

U10 10 meter U wind component (m.s-2) 

V10 10 meter V wind component (m.s-2) 

Table 14- Variables of the ERA-Interim data for the calculation of the ETp. 

  
Figure 36 - Timeline of conventional observations assimilated (DEE, Dick P., et al. The ERA‐Interim reanalysis: 

Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 

2011, 137.656: 553-597.). 

 


