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Executive summary  

The data products and services offered by DIANA will be based on a combination between EO 

data provided by various satellites as well as meteorological and complementary data derived 

from different data sources. In this way, it is possible to meet properly the data requirements of 

our users in terms of spatial, temporal and spectral resolution and by extending the operational 

capabilities of the platform offered. 

 
Building upon the EO datasets provided by Copernicus (in particular from the satellites Sentinel-

1 and Sentinel-2), this deliverable provides the methodologies and algorithms to achieve the EO 

products for following demand-driven services: 

 Non-authorized water abstraction detection and monitoring 

 Seasonal drought forecasting and monitoring  

 Supporting the implementation and monitoring of the WFD.  

 
The first service described in this deliverable explores the multi-temporal classification 

procedures based on spectral vegetation indexes (NDVI, NDWI and other Vegetation Index) and 

LAI: it includes the adaptions of existing algorithms of classification to obtain an operative 

process chain to map irrigated areas and to determine irrigation crop requirements and water 

abstractions. Other aspects are related to meteorological integration and other data source 

integration are briefly tackled.  

 
In the second part, the Drought Monitoring and Forecasting Service are shown. The aim here is 

to estimate present and forthcoming possible drought conditions through a modelling 

framework that is a combination of hydrological modelling, real-time weather data and seasonal 

climate forecasts.  

 

Finally, the third and last part of the document shows the key points of the services which 

DIANA aims to provide for supporting in implementation of Water Framework Directive. 

 
This document is left open for further updates based on new improvements and feedback that 

will be occurring during the development of the project.  
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1 Non-authorized water abstraction detection and 
monitoring 
1.1 Opportunities of using EO to detect irrigated areas and monitor 

water abstraction volume 

Over-abstraction, or the abstraction of more water than is sustainably available, regularly 

triggers or increases water deficits in the EU. It is currently considered the second most common 

pressure on the ecological status of water bodies in the Union. The water restrictions or natural 

shortages it engenders are a potential cause of conflicts between competing uses and could 

have substantial socio-economic consequences. 

 
In 2011, a quantitative target was set within the Roadmap for a Resource Efficient Europe1, 

recommending a water abstraction level below 20% of the available renewable water resources. 

In the 2012 Blueprint to Safeguard Europe’s Water Resources2 document, the European 

Commission reinforced its commitment for better water management, in accordance to the 3rd 

Implementation Report on the WFD3 that assessed the 2009 River Basin Management Plans and 

the 2012 policy review of the Strategy on Water Scarcity and Droughts4. The Blueprint highlights 

the issue of non-authorised water abstraction and recalls the responsibility of Member States on 

law enforcement. Non-authorised abstraction consists in the abstraction of water without 

permits or beyond authorised amounts, either over a year, or during a restricted period of time 

where the use of water is rationed. 

 
Earth Observation (EO), in particular European Union’s Copernicus programme (ex-GMES5), was 

indicated in the Blueprint to Safeguard Europe's Water Resources as a promising approach to 

address quantitative issues related to water, through the detection of possible cases of non-

authorised abstraction and as a complement to the often limited field data available. Copernicus 

is composed of three elements: (i) a space component with the development of the fleet of EU 

Sentinel satellites and with an access to data from other satellites, (ii) a service component 

                                                           
1 http://ec.europa.eu/environment/resource_efficiency/pdf/com2011_571.pdf 
2 http://ec.europa.eu/environment/water/blueprint/index_en.htm 
3 http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52012DC0670 
4 http://ec.europa.eu/environment/water/quantity/pdf/non-paper.pdf 
5 Global monitoring for environment and security services 
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including atmosphere, land, marine, emergency management, security and climate change 

services and (iii) an in situ component. 

 

1.1.1 Introduction to the problem 

The detection and the monitoring of non-authorised irrigation and abstractions are still 

challenging for water managers and water authority of EU member countries. In this context, 

there is practically very little reliable information available on the number and extent of non-

authorised irrigations and/or abstractions from groundwater, in particular those from private 

wells. The qualification of irrigation as “non-authorised” implies having access to a database of 

individual users’ water rights and spatial independent information to verify, by cross-checking, 

their compliance. Usually the monitoring and identification of irrigated areas are done by means 

of in-situ inspections and/or water meter records when available. Very often, when water meter 

are not installed or operating properly, irrigation volumes (and then irrigation fees) are 

estimated indirectly based on the declaration of crops that are cultivated (stated by farmers at 

start of irrigation season) and an average per-crop tabulated water requirement. 

 
Typically, two kinds of “non-compliance” can be distinguished:  

 irrigated areas which do not have the necessary water rights (non-authorized irrigation 

and/or abstractions of the first kind); 

 irrigation water consumption which do not remain within the legally allowed or assigned 

water volume (non-authorized irrigation and/or abstractions of the second kind). 

 
In the first case, all irrigated areas need to be identified and cross-checked with all available 

information/databases on irrigable areas (i.e. areas with a legal right to irrigate). Depending on 

national and/or regional legislation, the legal right to irrigate may be linked to the land, an 

abstraction point or a water source, either permanently or for limited periods of time (e.g. 

seasonal restrictions). In the second case, irrigation water consumption should be monitored 

and cross-checked with regulated allocation and/or hydrological planning data. 

 
In both cases, geospatial legal reference data i.e. cadastral maps of water rights, allocation 

based on current hydrological plans) are always needed. This also applies to any other approach 

based on in-situ non-EO information. The availability of legal reference data is a key condition 
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for the detection of non-authorized abstractions and is closely linked to the implementation of 

INSPIRE Directive and SEIS (Shared environmental Information system) principles. 

 
Earth Observation (EO) can supply two key products to tackle both the above-mentioned kinds 

of “non-compliance” in support of the water authority in charge of monitoring. They are: 

 maps of irrigated areas; 

 maps of irrigation water consumption and abstracted volumes. 

 
These products will empower users (i.e. water managers and public administration in charge of 

monitoring water rights) to: 

 monitor irrigated areas and the abstracted volumes on a systematic basis; 

 better target field inspections aimed at assessing compliance with legal water allocation; 

 ensure the legitimacy of self-declared irrigation water abstractions. 

 

1.1.2 EO for detection of irrigated areas 

A powerful tool for discriminating irrigated crops and even natural vegetation types is to use the 

characteristic difference in their seasonal development or phenology. To this end, the analysis of 

time series of EO data provides information to follow the phenological development of crops 

and natural ecosystems. This is usually based on monitoring of seasonal pattern of changes in 

leaf area index (LAI) or Vegetation Indices such as NDVI (Normalized Differential Vegetation 

Index), NDWI (Normalized Differential Water Index), spectral reflectance, etc.  

 
The detection of irrigated areas is, thus, accomplished by “multi-temporal analysis” of time 

series of above mentioned indices retrieved from EO and it is based on the assumption that in 

arid and semi-arid environment (like the Mediterranean Region), high trend of vegetation 

growth is compatible only with irrigation (Lockwood, Sarteel, Mudgaln, Osann, & Calera, 2014). 

More specifically, crop growing in hydrological deficit condition (rainfall is not sufficient to 

replace water losses by crop evapotranspiration) is compatible only with external irrigation 

supplies. The detection process is based on a digital classification procedure which aims to 

distinguish the different classes of irrigated crops based on the temporal pattern of their 

spectral response. The exact recognition of classes corresponding to irrigated crops requires the 

collection of groundtruth data in order to characterize “a priori” the crop phenology in a given 
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area (and the corresponding temporal pattern of selected spectral indexes). Also, precipitation 

data are needed to verify the occurrence of hydrological deficit conditions. 

 
The methodology briefly described here benefits from improved capabilities of recent satellite 

platforms such as Sentinel 2A-2B and Landsat 8; the sensors on-board of these three spatial 

platforms, operating as a multisensor constellation, provide much more spectral information, 

higher spatial resolution and shorter revisit time than in the past. In summary, the technical 

opportunities of using EO for irrigated areas mapping relay on: i) significance of irrigated areas 

response at NIR and SWIR wavelengths; ii) possibility of using novel Vis based on different 

spectral configurations; iii) high frequency of acquisition during a single growing season, hence 

increased accuracy also in presence of different growth stages. From the operative point of 

view, the usage of EO techniques is much more cost effective than field inspections and 

provides a territorial overview of irrigation fields. 

 
The identification of plots that receive supplemental irrigation (i.e. less amount of water, but in 

a well-selected timeframe) usually implies more difficulties: under this practice plots show lower 

contrast compared to rainfed or irrigated plots of the same crop. Supplemental irrigation is 

usually used when water stress occurs, and is employed both in extensive herbaceous annual 

crops and woody crops. In this case, precipitations data is needed to distinguish irrigation (the 

vegetation index, reflecting the plant water status, does not differentiate between water 

coming from rainfall or irrigation).  On the other hand, whilst the results are very accurate in the 

case of herbaceous crops, there are still other crops types where EO data interpretation is 

cumbersome, i.e. tree crops with sparse ground cover, like vine or olive orchards. In such cases, 

multiannual EO time series, ancillary data and cartographic information and very high resolution 

orthophotos should be used in order to correctly identify the plots where irrigation is applied.  

 
The above mentioned process allows distinguishing: 

 different categories of crops (e.g. wheat from corn), as illustrated in Figure 1; 

 irrigated crops from non-irrigated crops within a same category of crops, , as illustrated 

for wheat in Figure 2. This process also allows the detection of intermediate irrigation 

magnitudes (e.g. high irrigation volumes vs. low irrigation volumes), as illustrated in 

Figure 3. 
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Note:  Two parcels of wheat with the same sowing date and similar development at the beginning of the cycle (due to sufficient 

amount of rainfall) exhibit a different behaviour in the dry months as a consequence of no irrigation in one of them (green dots). 

 

 

 

 

 

 

 

 

 

         Note: Two parcels of wheat under different water supply: fully irrigated (red) and not well irrigated due a failure of pumping 

(green). Sowing date is later in fall than in previous figure (leading to not enough rainfall during early phenology stage). 

Figure 1 - Different temporal phenology patterns of wheat and corn both irrigated as described by NDVI 

Figure 2 - Different NDVI magnitude patterns of irrigated and non-irrigated wheat 

Figure 3 - Different NDVI’s magnitude patterns of wheat with different levels of irrigation 
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Finally, it is worth noting that: 

 the whole procedure is not an automatic system because it requires a precise 

knowledge of crops and their phenology and needs further validation by an experienced 

operator; 

 EO-derived information can represent a substantial tool to direct and guide field 

inspections (e.g. by providing targeted mission roadmaps for field technicians). 

 

1.1.3 EO for detecting and monitoring abstraction 

Several methods and experiences have demonstrated that EO are an effective tool to derive 

irrigation crop requirements maps (Calera, Campos, Osann, D’Urso, & Menenti, 2017) (Vuolo, 

D’Urso, De Michele, Bianchi, & Cutting, 2015). EO data enables water managers to estimate the 

water demand of crops located in the irrigated areas and to compare this with the authorized 

volume of abstracted water accordingly to the corresponding rights or hydrological plans. 

 
EO is particularly relevant to monitor irrigation abstractions in agricultural areas with regular 

water shortages and high reliance on irrigation, and in areas with large parcels cultivated with 

summer crops. Irrigated areas and crop water requirements can be identified with great 

accuracy i.e. > 90% for herbaceous crops in optimal growing conditions. It may be less suitable in 

(sub-) humid areas (where irrigation remains often supplemental), where vegetation is mostly 

perennial and/or where mixed patterns of crops in small parcels (<1 ha) are predominant, as it 

requires further supporting from local data and/or more complex infrastructure (with additional 

costs and human resources requirements). EO is less suitable in areas with high presence of 

clouds, which can affect the frequency and timing at which images are acquired, although this 

latter issue has been greatly reduced since the launch of Sentinel 2B which allows a revisit time 

of 4-5 days in combination with the twin satellite Sentinel 2A.  

 
The detection of non-authorised abstractions of the second type (volumes) requires mapping 

crop water consumption over time during the growing season. This can be accomplished by 

using the same time series of images used for the detection of irrigated areas, nonetheless 

requires further processing (Figure 5 and Figure 6). 

 
The basis of irrigation water requirements calculations is: 
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 time series of reflectances and vegetation index (VI) maps can be converted into maps 

of basal crop coefficient, the basic input for the widely used FAO56 model on crop 

evapotranspiration calculations. The crop coefficient is analogous to a transpiration 

coefficient. The FAO56 approach is the most widely used and operationally mature 

method since the seventies to retrieve evapotranspiration from agricultural crops. The 

crop coefficient can be obtained directly from linear relationships with vegetation 

indices (Glenn et al. 2011) and/or from reflectance data and a series of intermediate 

relationships involving fAPAR or LAI. The degree of accuracy of both methods is similar 

(D’Urso et al. 2011). The VI-based basal crop coefficient approach is operationally 

mature and can use spectral data from all Interpolation of consecutive images is used to 

fill the gaps (e.g. due to cloud cover), and the product of basal crop coefficient and daily 

reference evapotranspiration from the agro-meteorological station subsequently 

provides daily crop water requirements on a pixel by pixel basis. 

 remote sensing of evapotranspiration can also be obtained from surface temperature 

images by using additional techniques based on surface energy balance (Bastiaanssen et 

al. 1998). Given that of all operational high-resolution satellites only Landsat currently 

provides surface temperature (and with a revisit time of 16 days), and considering its 

thermal channel spatial resolution of 100 m pixel size, this procedure is complementary 

with the one previously described, and can provide an independent quality control in 

suitable areas. The upcoming Sentinel-3 will also provide a thermal band, albeit at the 

coarse pixel resolution of 1 km. 

 EO-driven soil water balance, according to FAO56, enables to calculate irrigation water 

requirements on a pixel by pixel basis. Precipitation and soil hydraulic characteristics are 

required. Following FAO56 procedures it is possible to calculate irrigation water 

requirements under water stress situations, as is used either in controlled deficit 

irrigation or in the case of supplemental irrigation. Knowledge of the desired water 

stress degree is required, which needs local calibration. EO-based soil moisture data can 

be useful in some cases, which explores by using Sentinel-1, se Section 2.4. 

 the calculation of abstracted volumes require the efficiency figures of both irrigation 

systems and irrigation distribution/storage. 

Figure 4 and Figure 5 show the flux diagram of the whole process (including indications on the 

sources of uncertainty and accuracy). 
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Figure 5 - Overview of processing steps from crop water requirements (CWR) to water abstraction 

Figure 4 - Overview of steps in using EO for detecting non-authorised abstractions 
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As described, Irrigation Water Requirement is an output of the soil water balance, where 

estimates of evapotranspiration rely on the time series of multispectral images. Soil water 

balance is the basis of water accounting, http://wateraccounting.org/. Even so, it is worth noting 

that the described EO-based procedure provides estimates of water abstractions and not real 

figures, because it is not a physical measurement of applied water, then it is not intended to 

replace individual metering of abstraction points.  But the EO-based procedure to obtain IWR is 

being used routinely to advise farmers about how much water to apply (Calera et al., 2017). 

Therefore we can expect reasonably the IWR so obtained represent the behaviour of farmer 

driven by the maximum benefit.  It provides a complete territorial view of abstractions and 

therefore is a powerful tool that can guide inspections to areas where it is more likely 

infringements to occur. 

 

1.1.4 Opportunity from active remote sensing 

During the past decade, several radar sensors have been deployed in space. Though none was 

designed specifically for irrigation mapping, several investigations have demonstrated that the 

data may provide useful information about the characteristics of irrigated landscapes. Firstly, 

the radar data can be acquired as frequently as possible without atmospheric interference and 

solar angle variations. Secondly, depending on the wavelength, the radar backscatter signal 

carries information about the moisture status of vegetated landscapes. 

 
Theory 

Backscatter may decrease or increase when vegetation grows, depending on whether the 

attenuation of the soil contribution is more important than the enhanced contribution from the 

vegetation canopy or vice versa. An increase in surface roughness (as determined by vegetation 

growth) and soil moisture content determines a more pronounced backscattering. 

 Attenuation of the soil contribution is dominant at low incidence angles  

 Canopy scattering dominates at higher incidence angles 

 There is a cross-over angle at which both effects balance each other (minimal vegetation 

influence) 

 

Therefore, backscatter values must be normalized to a reference angle of 40° for each 

acquisition geometry. 



D2.1 EO Methodology for DIANA Services 

 

                                                                                                                                       
This project is co-funded by the European Union 17 |78 

 

Sentinel 1 data can be downloaded from the ESA-Scihub in the following configuration modes: 

1) S1 GRD IW format (ground range detected, interferometric wave mode) acquired on 

descending orbits at an incidence angle between 230 and 400 (VV-VH polarization); 

2) S1 SLC IW format (single look complex data which contain phase information) on 

descending orbits (depending on topography – local incidence angle) in order to find 

dominant scattering mechanism and to obtain coherence information 

The GRD dual pol data require further processing for soil moisture retrieval like:  

1. Orbit correction 

2. Thermal noise removal 

3. Multi-looking with 2 in range and 0.5 in azimuth 

4. Co-registration time series using a master sample as input 

5. Advanced multi-channel filtering (reduce noise while maintaining a high spatial 

resolution which enclosed: i) despiking and respiking; ii) structural spatial filtering with 

13 x13 pixel window using temporal average image to select structure windows to use 

and iii) combined multi-channel filtering for VV and VH polarization [Wegmuller] 

6. Geocoding/Radiometric calibration, normalization and slope correction; 

7. Change detection method based on image ratio method. 

 
Drawback for Sentinel 1 data: only one backscatter measurement at one incidence angle per 

image acquisition -> no seasonal varying slope parameter. 

 
Limitation: 

1. From temporal perspective, seasonal vegetation signal in C band time series much 

weaker than soil moisture signal -> Seasonal vegetation effects are neglected in first 

approximation. 

2. When using HH polarization, better penetration of vegetation than in VV polarized 

backscatter. 

 
Advantage:  Benefiting from the dense time series of SAR S1 images, we can suppose that the 

backscatter change between two subsequent acquisitions is mainly related to the temporal 

change of soil moisture. Thus, vegetation biomass or crop canopy or surface roughness, which 

also affect the radar response, are considered constant [Balenzano et al., 2012]. 
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Image time series will be investigated assuming a linear correlation between SAR backscatter 

and relative SM between estimated dry and wet references of a given soil. This methodology 

originally developed and operationally implemented using scatterometer data could be applied 

on S1 data in order to calibrate the model and accurately compute dry and wet references 

[Wagner et al., 1999]. Thus, a relative soil moisture index can be retrieved.  
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2 Diana methodologies to detect irrigated areas  

2.1 Overall Approach 

The basic assumption of the proposed methodology is that, under conditions of hydrological 

deficit as in semi-arid environments, high crop growth trends are compatible only with external 

irrigation supplies. Based on this assumption, the detection of the irrigated areas can be 

conducted independently of the actual cultivated crops. Practically, this means that a detailed 

knowledge of the spatial distribution of the different crops is not required. Rather, it is enough 

to take into account the timing of some indices able to represent the vegetative vigor, such as 

NDVI, NDWI, LAI. 

  
The classification process based on temporal pattern recognition exploits the captured 

differences from the canopy on the above-mentioned indices to assign each pixel (or object) to 

an irrigated/not irrigated class. These classes need to be defined on the basis of field work and 

“a-priori” knowledge about the crop phenology in a given area. This crop classification is the 

basis for identifying irrigated areas and the point in time when this irrigation happens. 

 
From an operational point of view, the procedure consists of the following stages: 

 Choice of data and preliminary processing; in this phase, the types of sensors most 

suitable for the study are chosen based on the requirements in terms of spatial, 

temporal and spectral resolution; 

 Production of multi-time series of vegetation index NDVI maps (bat also the  

Normalised Difference Wetness Index (NDWI) has also been suggested in similar studies, 

as it is sensitive to vegetation moisture content) (Gao, 1996); at this stage, a spectral 

index map NDVI is produced for each of the acquisitions; subsequently, a temporal stack 

(layer stack) is created;  

 Manual masking of areas not of interest, typically urban, mountain and wetlands such 

as rivers, lakes and water basins; 

 Unsupervised classification (clustering) applied to time series of NDVI index maps. 

 Automatic extraction of temporal NDVI index pattern; 

 Labelling of vegetative areas, identification of classes of vegetation categories that, 

given the water deficit conditions, show NDVI pattern compatible only with irrigation; 
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 Supervised classification: this is done using such training pixels of irrigated areas 

identified via the multi-time classification of NDVI index combined with on field 

inspection and ground trues; this phase is aimed at improving the accuracy of the 

unsupervised classification; 

 Mapping of irrigated areas along with possible integration with other GIS data. 

In summary, the time series maps of NDVI index collects all the information needed, pixel-by -

pixel, parcel-to-parcel, to establish whether or not a given area is irrigated. However, the 

solution to the problem of identification requires a single map for the whole irrigation season.  

Ideally, this would include a binary information (irrigated/non-irrigated) in which regions are 

divided into classes (irrigated herbaceous crops, irrigated tree crops and not irrigated areas with 

associated their accuracy). 

 

2.2 EO Technical requirements 

2.2.1 Spatial resolution requirements 

Researches has shown that the finer the spatial resolution, the greater the accuracy of irrigated 

area class designations (Thenkabailc, Biradar, & Noojipady, 2007). This simple statement would 

always pick the sensor with the best spatial resolution available. In general, to map accurately 

irrigated areas, the spatial resolution of the sensor must be equal to or less than the size of the 

fields of interest.  

 
From the operational point of view, the choice of the most appropriate spatial resolution 

depends by the smallest cartographic unit. In technical practice, it is common to refer to what is 

stated in the Table 1- Using Sentinel-2 data (10 m best spatial resolution) it can be assumed that 

the minimum mapping area is half hectare, and by excluding elongated shape plots with at least 

one dimension less than five times the pixel size of available satellite data. 

Scale denominator Minimum mapping object dimension (m) Pixel dimension on 
the ground (m) 

250.000 250 125 

100.000 100 50 

50.000 50 25 

25.000 25 12,5 

10.000 10 5 

Table 1 - Scale Denominator, Minimum mapping object dimension and pixel dimension on the ground   



D2.1 EO Methodology for DIANA Services 

 

                                                                                                                                       
This project is co-funded by the European Union 21 |78 

2.2.2 Spectral data Requirements 

The selection of spectral bands or indices (Tab.3.2) which contain the maximum amount of 

irrigation-related information is a significant challenge. While the analysis of EO data for 

detecting vegetated areas in agricultural lands is quite straightforward, the distinction between 

irrigated and non-irrigated crops is more difficult (Ozdogan, Yang, Allez, & Cervantes, 2010). A 

further complication may arise when only supplemental irrigation is usually applied because 

these crops exhibit less contrast against rainfed or irrigated plots. There is a wide consensus that 

NDVI is a valuable information for monitoring vegetation and irrigated lands. Particularly, in arid 

and semi-arid areas, which are under hydrologic deficit (Agnew & Anderson, 1992), 

characterized by single irrigation period and simple land cover types, the pattern of NDVI 

associated with irrigation is a well-defined feature. However, difficult cases for distinguishing 

irrigated from not irrigated crops occur in location where the corresponding growing seasons 

overlap. To overcome this shortage, other authors (Zarco-Tejada & Miller, 2002) have shown 

that the chlorophyll index suggested by Gitelson (A. Gitelson, Kaufman, & Merzlyak, 1996) is 

correlated with vegetation stress and hence it may allow for distinguishing irrigated from not 

irrigated crops. The Normalised Difference Wetness Index (NDWI) has also been suggested in 

similar studies, as it is sensitive to vegetation moisture content. This spectral index is based on 

the increased absorption of shortwave-infrared from leaf moisture. NDWI is a measure of liquid 

water molecules in vegetation canopies that interacted with the incoming solar radiation. It is 

less sensitive to atmospheric scattering effects than NDVI. NDWI increases as leaf layer 

increases, indicating NDWI is sensitive to the total amounts of liquid water in the stacked leaves 

(Gao, 1996). 

 

Index Formula References 

NDVI (Normalized Difference VI) (NIR-RED)/(NIR+RED) https://dx.doi.org/10.1080/0
1431160500168686 

NDWI (Normalised Difference 
Wetness Index I) 

(NIR-SWIR)/(NIR+SWIR) (Gao, 1996) 

Cl red-edge (
𝑅783

𝑅705
) − 1   (for Sentinel-2) (A. A. Gitelson, Gritz †, & 

Merzlyak, 2003) 

Table 2 - Spectral vegetation indices for irrigated area mapping 
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2.2.3 Temporal data Requirements 

To determine the optimal period of image acquisitions and the minimum temporal resolution, 

“a priori” knowledge about the main cultivated crop and their crop calendar (seeding, 

harvesting, development) is required.  Another issue related to temporal resolution is the clouds 

presence: with short revisit time it is possible to replace cloudy acquisitions with the next cloud 

free. The problem of persistent clouds of humid regions is still challenging. 

 
Typically, the temporal resolution required for irrigation detection purpose is to have a fairly 

cloud-free image (<10% cloud) every 1-2 weeks from about 2 weeks before the start of the 

growing season until its end.  

 
Temporal resolution of Sentinel-2 A&B and Landsat-8 satellites: 

 
The European Space Agency’s Copernicus programme has expanded on March 7th, 2017 with 

the launch of Sentinel-2B, which alongside Sentinel-2A will provide 5-day revisit period. 

 
The Landsat 8 satellite (launched February 11, 2013) images the entire Earth every 16 days in an 

8-day offset from Landsat 7. 

 

2.3 Pre-processing of EO data 

2.3.1 Inter-calibration and Atmospheric correction 

Evaluation of crop development based on data from different satellites needs to take into 

account factors that may affect the sensor's response, such as calibration differences, between 

different sensors, variability of atmospheric conditions, and different viewing and illumination 

angles due to acquisition geometry. 

 
To reduce the errors caused by these factors, it is needed to adopt procedures for the 

radiometric and atmospheric correction of EO data, even in the simple case of time-series of 

vegetation index (Duggin and Robinove 1990); it has been documented these corrections are 

especially relevant when the aim is to assess and evaluate the NDVI variations between 

acquisitions of different epochs (Song, Woodcock, and Seto 2001). 
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2.3.2 Clouds masking and gap filling 

There are many ways on how to get cloud free images of Sentinel-2 and Lansat-8. All techniques 

are based on two steps: cloud masking and gap filling. 

In the following, an overview on possible technologies that can be used for cloud masking is 

given. 

FMASK   

FMask is a very popular method that was developed by Zhu and Woodcock for Landsat-8. Since 

Sentinel-2 uses other bands (i.e. no thermal infrared but) the method had to be revised and is 

currently available here. Generally speaking, FMask results for Sentinel-2 are not as good as for 

Landsat (mainly due to the missing thermal band). The algorithm is implemented in Python and 

can be executed via the command line. 

 
SEN2COR 

Sen2Cor is a processor for cloud-free Sentinel-2 Level 2A products. It performs the atmospheric- 

terrain and cirrus correction of Top-Of- Atmosphere Level 1C input data. Sen2Cor returns three 

cloud probability classes: High, medium and low. The satellite image can then be masked with a 

custom user combination of these three classes. Sen2Cor can be downloaded from 

http://step.esa.int/main/third-party-plugins-2/sen2cor/.  It is executed via command line or can 

also be integrated into a desktop application via SNAP. Another very useful website concerning 

Sen2Cor is the official user forum with designated trouble shooting sections. Many users have 

reported bugs while using Sen2Cor which are currently being worked on. Sen2Cor is a good 

cloud masking alternative but there are still many unresolved issues (over-/underestimation, 

bugs with water pixels.) 

 
MAJA 

The MAJA processor (MACCS ATCOR Joint Algorithm, say "maja") is a processor for cloud 

detection and atmospheric correction, specifically designed to process time series of optical 

images at high resolution, acquired under quasi constant viewing angles. It allows  for the 

processing of time series of LANDSAT or Sentinel-2 images. Since 2016, it has been progressively 

including methods taken from DLR’s ATCOR processor. It is now the object of a collaboration 

between CNES, DLR and CESBIO, and benefits from ESA funding. 
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Its main feature is to use the multi-temporal information contained in time series to detect the 

clouds and their shadows, and to estimate the aerosol optical thickness and correct the 

atmospheric effects (taking into account the adjacency effect and the illumination variations due 

to topography). To process time series, an example of a scheduler able to launch MAJA is 

available here: https://github.com/olivierhagolle/Start_maja.  

The gap filling procedure is generally applied to the vegetation indices. There are several 

methods to fill data from time-series of vegetation indices or surface reflectance values, 

grouped into four major classes (Table 2): 

1. slope methods, including the best index slope extraction technique (BISE); 

2. filter-based methods, including the Savitzky-Golay filter technique and its variants, and 

the mean value iteration filter;  

3. function fitting methods, such as the Asymmetric Gaussian fitting and the harmonic 

analysis of time series (HANTS); 

4. smoothing techniques, i.e. the Whittaker smoother. 

 
Comparisons of these techniques have been carried out in several case-studies, by using 

different indicators of performance. Each method has its own advantages and drawbacks. New 

techniques have been proposed in recent years, and in many cases there is not a rigorous 

comparative analysis with other techniques. Almost all comparisons have been based on one 

sensor.  

 
Besides the choice of the algorithm, it is important in the context of DIANA to consider which 

tools are available for performing these analyses.  For this reason, within the categories given in 

Table 2, partners of DIANA project (Ariespace and Agrisat Iberia) have successfully applied the 

Best-Index slope extraction technique and Whittaker smoother in the context of H2020 FATIMA 

project. These methods can be implemented in Matlab and in the open-source package R. 

 
 
 
 
 
 
 
 
 
 

https://github.com/olivierhagolle/Start_maja
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Category Method Description 

Slope Interpol. 
Best-Index slope 
extraction 
technique 

Compares the current term value with the previous and the 
next term within a predefined sliding window, and replaces 
these values with the mean value of the previous and the 
next values if the percentage difference is greater than a 
predefined threshold (20%). 

Filter based 

Savitzky-Golay 
and its variants 

Local polynomial fitting of the upper envelope of data series, 
based on two parameters: the length of the temporal window 
used and the order of the polynomial. As proposed by Chen 
et al. (2004), the values of these parameters have to be 
optimized for each case to get the best match between 
observations and reconstructed values. In newer variants, the 
temporal window may be asymmetric and variable in length. 

Mean value 
iteration 

Iteratively compares each date with the average of the dates 
before and after it, replacing the date with this average if the 
difference is above a certain threshold. The maximum 
difference date value will be removed in an iteration process. 
Iteration will stop when all differences are less than the 
threshold. 

Function fitting 

Asymmetric 
Gaussian fitting 

Fits local, nonlinear functions at intervals around the local 
maxima and minima, then merges these into a global function 
describing the full NDVI time series. 

Fast Fourier and 
Harmonic analysis 
(HANTS) 

Time series are decomposed into sum of sinusoidal functions; 
once derived phase and amplitudes, these parameters are 
used for reconstructing and analyzing the data set. 

Smoothing 

Whittaker 
smoother 

Based on “penalized” least squares regression, it fits a 
discrete series to discrete data and penalizes the roughness 
of the smooth curve. In this way, it balances the reliability of 
the data and roughness of the fitted data. 

Table 3 - Summary of gap filling methods considered in the present study 

 

2.4 Production of Time-series of vegetation indices 

The signals from an EO satellite sensor can be converted into reflectance and vegetation indices 

(VI) by combining the various spectral bands. Particularly, as reported in Allen et al. 1998, the 

Normalized Difference Vegetation Index (NDVI) is linearly related to the basal crop coefficient. 

(defined as the ratio of the unstressed crop transpiration to the reference evapotranspiration). 

Therefore, the phenological curves can also be expressed in terms of NDVI vs. time. Other 

indices useful for classification purpose are already described in Table 2. For irrigation detection 

some authors (Gao, 1996) have explored the usefulness of SWIR bands. A particular mention 

deserves the Leaf Area Index which is one of the most powerful parameter related to the crop 

development. The Leaf Area Index (LAI), defined as the total one-sided area of green leaf area 

per unit ground surface area, is used to derive agronomical indicators for various crop 

management purposes. For instance, LAI maps are used in agro-meteorological models to derive 
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the crop water requirements, as implemented in the irrigation advisory service Irrisat (Vuolo et 

al., 2015), to monitor the nitrogen status and to apply fertilizer with variable rates (e.g., 

FarmSat, Fatima), and finally as input in crop models. On a larger scale, LAI and other biophysical 

variables are used for example for yield predictions at administrative level. A general overview 

of remote sensing contributions to agriculture is given in (Atzberger, 2013). 

 

2.5 Multitemporal classification 

The detection of irrigated areas (defined as the identification of their location and their areal 

extent) requires land-use/land-cover maps that allow distinguishing irrigated from non-irrigated 

crops. This is accomplished by a supervised “multi-temporal classification” based on a time 

series of VIs. The classification process based on temporal pattern recognition exploits the 

captured differences from the canopy on the VI to assign each pixel to a vegetation class. These 

classes need to be defined based on field work and knowledge about the crop phenology in a 

given area. 

 

2.5.1 Pixel based classification vs. Object based Classification 

For the classification of satellite data, two basic methods are to be distinguished: the pixel-

based and the object-based method. In the case of the pixel-based method, each individual 

image pixel is analysed and classified according to its spectral features. Object-based methods 

assume that a pixel is very likely to belong to the same class as its neighbouring pixel. In a first 

step, the image space is segmented into homogeneous objects consisting of similar pixels. These 

objects are then also grouped in classes of the same semantic significance. For classification, 

however, apart from the spectral features, additional features such as shape, size, texture and 

neighbourhood relations of the objects are available (Koch et al., 2003). 

 

2.5.2 Classification and recognition of NDVI temporal patterns of 
irrigated crop 

Two basic categories exist in current classification methods, supervised and unsupervised. 

 
Unsupervised clustering classification method is often used for studies in which the location 

and characteristics of specific classes are unknown. Unsupervised classification uses clustering 

to identify ‘‘natural’’ groupings of pixels with similar NDVI properties. In this case, the clusters 
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correspond to locations with similar annual sequences in green-up, maximum, and senescence 

of green biomass. Several clustering algorithms exist, generally they are a variation of the k-

means. In the context of DIANA, it will be adopted an iterative statistical clustering algorithm 

that defines clusters or groups of NDVI values with similar properties.  

 
Supervised classification clusters pixels in a data set into classes corresponding to user-defined 

training classes. Several supervised classification algorithms are available for image 

classification. 

 
From “ancient” minimum distance classification method to most recent application of machine 

learning.  

 

In the context of new classification algorithm based on machine learning, the Random Forests 

(RF) classification (Breiman, 2001) is one of most popular. It is an ensemble learning 

classification tree algorithm, which became very common for remote sensing data classification 

in the past few years. One main advantage of RF is that the construction of each tree is based on 

a bootstrap sample of the same size as the input data set (sampling with replacement). The 

generated trees are applied only to the not drawn samples (out-of-bag data, OOB) and the 

majority votes of the different trees are used to calculate the model accuracy. Additional 

benefits of RF are the random selection of split candidates, the robustness of the output with 

respect to the input variables (distribution of variables, number of variables, multi-collinearity of 

variables) and the provision of importance information for each variable. The latter 

characteristic of RF permits the user to rank and select features. Several studies reported that a 

reduced/optimized feature set further improved the mapping accuracy. 

 

2.5.3 Accuracy 

In remote sensing, estimates of precision are an important technique for assessing and 

comparing classification results. There are various methods of determining this precision, which 

have already been derived and extensively discussed in the literature. Banko (1998), Congalton 

(1991), Rosenfield et al. (1982), Hudson and Ramm (1987) and van Genderen et al. (1978) give a 

good overview of the various measures, the general methodology as well as the establishment 

of an error matrix and the topic of training areas (samples). 
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In the present study, the mathematical derivation of the individual measures will not be shown 

and readers are referred to the literature mentioned above. For quality assessment (estimates 

of precision), the overall accuracy and the user’s and producer’s accuracy are calculated. The 

representation takes the form of a conventional error matrix. This matrix lists the reference data 

(ground truth) in the columns and the classified training areas in the rows. The diagonal of this 

matrix shows the correct classified objects. 

 
A user’s and producer’s accuracy basic measure is the overall accuracy, which can be calculated 

from the ratio of the number of correctly classified samples (sum of the diagonal values in the 

error matrix) to the total reference data. This measure is easy to calculate and enables the 

quality to be estimated across a number of classes. Quality estimates for individual classes are, 

however, also possible. 

The user’s and producer’s accuracy (Congalton, 1991) is suitable for this purpose. The 

producer’s accuracy is calculated from the correctly classified number of objects in a class 

divided by the number of reference objects in this class. This is a measure of how well the 

respective class was identified. It includes the so called error of omission. This corresponds to 

the reference objects that belong to the class under consideration but were not recognized by 

the classification model. 

 
The user’s accuracy can be derived from the correctly classified objects of a class divided by the 

total number of all the objects assigned to this class. This permits a statement to be made on 

the reliability of the classification for the class under consideration, since it also includes in the 

measure of quality those objects that do not belong to the class under consideration but which 

are identified as such objects by the classification model. These objects correspond to the error 

of commission.  
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3 Estimation of Abstracted Volumes from groundwater, 

Irrigation Water Requirement and Crop Water 

Requirement based on Earth Observation (EO) data 

 
One of the major outputs of the Diana Project is the development of tools based on E.O. to 

estimate the irrigation water requirements and, by means of it, the abstracted volume from 

groundwater.  

 
Currently, in operative context, the abstracted volumes are usually monitored: 

1. Directly, through in-situ metering (i.e. flow meters in the case of groundwater wells 

(electricity used for pumping can sometimes be used as proxy), a variety of counters in 

the case of surface water release from dams, reservoirs, channel networks or 

individual pumping devices); Or 

2. Indirectly, through the record of operation hours and channel delivery flow, in areas 

with irrigation channels; or 

By calculating a water balance, taking into account soil water storage and depletion (and 

eventually capillary rise), evapotranspiration and precipitation, as indicated by 

standard procedures of FAO- paper 56 (Allen et al. 1998). 

 
Technically speaking, it’s worth to note that the problem of estimation of water abstraction 

from groundwater to irrigate the crops and the irrigation water withdrawal from collective 

irrigation networks are conceptually similar. Both aim to replace the water consumed during all 

the development stages of the crop. In the hypothesis that each farmer withdraws an irrigation 

water volume not less than the irrigation water requirement of crops, the estimation of water 

abstraction can be achieved by the calculation of Net Irrigation Water Requirement (NIWR) of 

crop. In the literature, the definition for NIWR is: 

 
NIWR: Net Irrigation Water Requirement is the water that must be supplied by irrigation to 

satisfy evapotranspiration, leaching, and miscellaneous water supply that is not provided by 

water stored in the soil and precipitation that enters the soil (Jensen, Burman, & Allen, 1990). It 

is expressed in millimetres per year or in m3/ha per year (1 mm = 10 m3/ha). Generally, NIWR 

can be calculate as follow: 
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NIWR = (ETC + Wl + Wm) – (Pe +ΔWs) eq. 3.1 

 
where ETC (mm) is the crop evapotranspiration under standard conditions (i.e. crops in optimal 

agronomic conditions and soil water supply); Pe is effective precipitation available for the crop, 

ΔWs is the variation of soil water storage (volume per unit area or depth) taking into account 

percolation and capillary rise, Wl is the water required for leaching, Wm is the miscellaneous 

requirement (germination, frost protection and so on). To obtain the actual quantity of water to 

be applied, an efficiency coefficient has to be applied to take into account losses of irrigation 

distribution system. 

 
From the operational point of view, in the eq 4.1 the most important terms are ETC and Pe.  

Considering a long-medium period, such as the duration of a typical irrigation season (3-6 

months), the miscellaneous losses, leaching and soil water content variation tend to be 

negligible (while for irrigation scheduling the estimation of the variation in soil water content 

becomes a notable terms). With these assumptions in mind, it is clear that the most important 

terms is the so-called Crop Water Requirement defined as follow. 

 
CWR = ETC- Pe eq. 3.2 

 

which is the standard approach proposed by (Allen, Pereira, Raes, & Smith, 1998) and adapted 

to E.O. data as described below. 

 
Effective precipitation. Several formulations have been proposed to estimate Pe, in which the 

effective precipitation depending on canopy development described by means of the Leaf Area 

Index LAI, and the fractional vegetation cover fcover, accordingly to (Braden, 1985). 

 
Crop evapotranspiration. Crop evapotranspiration under standard conditions, denoted as ETC, is 

the evapotranspiration from disease-free, well-fertilized crops, grown in large fields, under 

optimum soil water conditions, and achieving full production under the given climatic 

conditions. The Penman-Monteith equation was implemented in the standard procedure for 

estimating of ETC, commonly known as the FAO-56 method. This procedure can be adapted to 

Earth Observation (E.O.) data for the operational assessment of crop water requirements. It is 

generally made by using the following procedures: 
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3. the approach based on the crop coefficient concept Kc, establishing a direct 

correspondence between Kc and reflectance measurements;  

4. the direct calculation, “one-step” approach, based on the application of the Penman- 

Monteith equation with appropriate values of canopy variable such as crop height, 

surface albedo and Leaf Area Index (LAI). 

 
Surface energy balance algorithms like SEBAL or METRIC (Allen et al., 2011), requiring thermal 

observations, which are only available from Landsat at spatial resolution of 100 m.  

 
Considering the technical constraints of the third approach outlined above, the first two 

approaches will be adopted in DIANA. Following a short description of them will be provided. 

For detailed description see: D’Urso et al., 2010; Vuolo, D’Urso, De Michele, Bianchi & Cutting, 

2015. 

 

3.1 Kc-NDVI approach 

In the original P-M equation, this condition implies a minimum for the leaf resistance, which can 

be considered as a constant for most crops. Experimentally determined ratios of ETC/ET0 called 

crop coefficients (Kc), are used to relate ETC to ET0 (where ET0 is the reference 

evapotranspiration as defined in FAO 56), 

 
ETC = Kc ET0 eq. 3.3 

 
Moreover, the crop coefficient approach, as proposed by (Neira, Álvarez, Cuesta, & Cancela, 

2005)  and adopted within the FAO procedure, splits Kc into two separate coefficients, one for 

crop transpiration (Kcb, basal crop coefficient) and one for soil evaporation (Ke), which 

describes the evaporation component of ET: 

 

ETC = (Kcb+Ke) ET0   eq. 3.4 

 

where Kcb “spectral” basal crop coefficient [0.15 – 1.15], NDVI, calculated from surface 

reflectance bands. The soil evaporation needs to be accounted for the estimation of Kc. As is 

known, Ke, is related with bare soil fraction, and is strongly dependent on the wetting state of 

bare soil fraction, because the evaporative power of soil changes strongly if the soil is wetted or 

if the soil is dry. Irrigation system (gravity, sprinkler, drip, etc) and irrigation frequency, coupled 
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with type and stage of crop, are the factors that determine the time of different bare soil 

wetting states. An approach for crops that in their maximum crop development fully cover the 

soil, like wheat, corn, barley, and so on, can be stated as: 

 
Kc = 1.15 NDVI + 0.17 eq. 3.5 

 
where: Kc is the “spectral” crop coefficient. 

 

3.2 ETp direct calculation, based on the application of the Penman- 
Monteith equation 

In direct calculation, ETp can be estimated by the Penman Monteith equation, explicitly written 

in terms of albedo α, Leaf Area Index (LAI) and meteorological data: 

 

ETp =
86400

λ
[
 
 
 ∆[((1 − α)Rs − Rnl) − (1 − 0.4e−0.5LAI)] +

ρcp(es − ea)

ra

∆ + γ(1 + rc,min ra⁄ )
]
 
 
 
 

eq. 3.6 

 

Where: λ is the latent heat of vaporization [MJ kg-1],  is the slope of saturation vapor pressure 

curve at air temperature T [kPa °C-1], Rs is the incoming solar radiation [MJ m-2 day-1], Rnl is the 

net outgoing longwave radiation [MJ m-2 day-1], cp is the specific heat at constant pressure [MJ 

kg-1 °C-1], ρ the mean air density at constant pressure [kg m-3], (es – ea) is the vapor pressure 

deficit [kPa],   is the psychrometric constant [kPa °C-1]. 

 
In direct calculation of the Penman-Monteith equation can be estimate the maximum fluxes of 

evaporation from soil (E) and transpiration from plant leaves (T) once provided with the canopy 

parameters related with the surface properties ; essentially the surface and canopy resistances 

(rs and rc respectively) and the net radiation (Rn). These parameters are, in turn, related to 

three parameters derived from E.O. data: namely, the leaf area index (LAI), the crop height (hc), 

and the surface albedo (r). The variable rc is inversely related to the active LAI and, in turn, 

dependent on the maximum resistance of a single leaf. 
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3.3 Accuracy in evaluation of ETC by EO approaches 

The literature is abundant in E.O.-based ET models or model-variants and validations of these 

models in different environments, surfaces and managements. Every model has strong scientific 

bases and are well calibrated for ET assessment at particular temporal and spatial scales. The 

experiences carried out within the DEMETER, PLEIADES and SIRIUS project have confirmed that 

E.O. is a mature technology ready to be transferred to operational applications in irrigation 

management. Several papers have demonstrate the accuracy of the methods mentioned above 

(Rubio et al., 2006). Comparison between different methods and in field measurements are 

shown, for example, in Rubio et al., 2006; D’Urso et al., 2010. The figure below shows some 

results from D’Urso et al., 2010. 

 

 

Figure 6 - Actual (ETa) versus crop evapotranspiration (ETC) of irrigated maize (mmh−1), from 12 to 25 July 2007, 

commercial farm farm, Sardinia. ETC values were estimated using the FAO methodologies with six different 

approaches to retrieve canopy parameters such as LAI, r or Kc-coefficient (D’Urso et al., 2010). 

 

3.4 Assessment of uncertainties and mitigation strategies 

Earth Observation presents a range of technical assets in contrast to field observation alone. It 

can provide detailed maps of irrigated areas and estimate the level of water consumption in 

large geographical areas (e.g. watershed scale), where field measurements provide only point 

values of evapotranspiration (ET) for a specific location and fail to provide the ET on a broader 
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regional scale. Images can be obtained, e.g. on a weekly basis, depending on the resolution 

required. Several comparative analyses show that Earth Observation systems have good 

accuracy relative to field measurement techniques of crop water requirements (Neira et al., 

2005) (Castaño, Sanz, & Gómez-Alday, 2010) (Vuolo et al., 2015) and water abstractions. In the 

Italian Pilot area of Sannio Alifano, during the IRRISAT project implementation, for example, the 

overall difference between the EO based estimation vs. flowmeter measurements was only 9% 

over 150 days for an area of about 3.000 ha. Similar comparisons were carried out in other 

areas, thus confirming that E.O.-based crop water requirements provide a satisfactory 

estimation of water abstractions for irrigation. 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
However, as any estimation procedure, EO based techniques have their own uncertainty. The 

main uncertainties, which affect the estimation of irrigation water abstractions and withdrawals, 

are: 

Figure 7 - Measured Irrigation water withdrawal (dark blue) versus estimated by EO (light blue) for 10 

districts in the Pilot Area of Sannio Alifano during Irrisat Project implementation (year 2012). 
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1. The accuracy of the procedure to classify irrigated areas: overestimation or 

underestimation of irrigated areas leads to an error in the estimation of irrigation water 

requirements at district level, by considering not irrigated plots (commission error) or by 

neglecting irrigated plots (omission error); 

2. The calculation of irrigation water requirement from EO involves several steps, each of 

which is associated with further uncertainties (i.e. precipitation and soil data, 

efficiencies 

 

of irrigation system). These uncertainties remain in the same order of magnitude as for 

fieldwork. Uncertainty of EO-derived crop water requirements is around 5-10%.  

3. The difficult to monitor water consumption with a sufficient resolution on small-

cultivated parcels with mixed patterns of crops (about 1ha or less). 

4. The presence of clouds can also affect the frequency and timing at which images are 

produced. 

 
From technical point of view, these shortcomings will be tackled by the adoption of mitigation 

procedures. In the development of DIANA project, an assessment to evaluate the magnitude of 

uncertainties will be performed. The following table describe for each source of uncertainty the 

mitigation procedure and the related accuracy assessment. 

 

n. 
Source of 
uncertainty 

Expected Magnitude Mitigation 
Accuracy 
Assesment 

1 

Classification of 
irrigated areas 
is affected by 
commission 
and/or 
omission errors 

Accuracy in semiarid areas 
reaches typically over 90%, 
which is comparable to field 
work accuracy. Distinguishing 
non-irrigated areas from 
irrigated areas - especially in 
years with a rainy spring as 
well as areas with perennial 
crops - can be difficult. 

Use additional 
information; increase 
the global accuracy by 
using the capacity of 
time series of images 
and by relying on a 
multiannual 
perspective. 

An error matrix will be 
produced to evaluate 
the overall accuracy of 
the classification. 

2 

Calculation of 
irrigation water 
requirement 
from EO 
involves several 
steps 

These uncertainties remain in 
the same order of magnitude 
as for fieldwork. Uncertainty of 
EO-derived crop water 
requirements is around 5-10% 

Collect as accurate 
data as possible and 
ensure transparency 
about the degree of 
uncertainty 

Comparison with flow 
meters’ measurements 
of representative 
sample of irrigated 
plots or whole 
districts. 

3 
Low resolution 
of EO images to 
monitor small 

It depends on the pilot area 
average field size 

Use higher resolution 
images 

Assessment of 
detection of small 
parcels in well-known 
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plots area. 

4 
Presence of 
clouds 

Low, with the advent of 
Sentinel-2b this risk are greatly 
reduced. 

Use the full virtual 
constellation of 
available Earth 
Observation satellites;  
gap filling procedure 
to replace clouds. 

Assessment of 
minimum number of 
cloud free images. 

Table 4 - Estimation of irrigation water requirement and water abstraction from EO - Source of uncertainty, 

magnitude, mitigation procedures and the related accuracy assessment. 

 

3.4.1 Mitigation actions in practice 

It is worth explaining in more details some of proposed mitigation actions. 

 
1. Increase the global accuracy by using the capacity of time series of images and by relying 

on a multiannual perspective. 

The mapping of irrigated lands with remote sensing is strongly affected by the timing of image 

acquisition and the number of images used (Pax-Lenney & Woodcock, 1997). For example, with 

a single or few satellite acquisitions, errors come from the difficulty in distinguishing barren field 

and temporarily fallow, immature crops with low density cover and not irrigated poor crops, etc. 

Alternatively, if scene were observed in multiple dates, certain characteristics trends become 

evident. This is more evident for tree crops, which have annual, or pluriannual phenological 

patterns. Another important benefit of multi-date (time-series) acquisitions is the capability to 

clearly define the peak period of crops. For these reasons, long-time series of satellite images 

improve the global accuracy of non-irrigated area classification, leading the reduction the 

classification errors. 

 
In practice in the context of DIANA project, the global accuracy will be increased by using the 

capacity of time series of images and by relying on a multiannual perspective, which provides an 

expert system of classification layers (e.g. containing previous successful classifications of 

perennial crops and winter crops). Detection of new irrigated areas by using this updated frame 

can be done through the overlay of annual irrigated maps (Lockwood, Sarteel, Mudgaln, Osann, 

& Calera, 2014). 

 
Furthermore, another mitigation procedure involves the availability of historical data and 

information on land-use, crop rotations and management (like typical seeding and harvesting 
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date) and, finally, field inspections. Based on these supplementary information, additional 

supervised classification procedures will lead to achieve the expected global accuracy. 

 

2. Collect as accurate data as possible and ensure transparency about the degree of 

uncertainty. 

Earth Observation methodologies to estimate crop water requirements have a long-time 

application and they have already demonstrated their capabilities and robustness as effective 

tool (Rubio et al., 2006; Jochum & Calera, 2006; Bastiaanssen, Molden, & Makin, 2000). Of 

course, uncertainties can still come with input dataset itself. For example, ancillary data, like 

meteorological data used in crop water consumption calculations. To reduce it, different models 

and source of data will be used and each one of these will be provided with a “transparent” 

assessment of their accuracy. 

 
3. Improve spatial resolution of images 

The monitoring of CRW of small plots needs higher spatial resolution. Based on “a priori” 

knowledge of plot size, commercial satellites with higher resolution will be used in combination 

with “free of charge” acquisitions. Also for this issue, multi-temporal data availability has also 

proved to be very useful in identifying the best time for higher resolution acquisition (generally 

corresponding with crop development peak).  With this strategy, two goals will be achieved: 

improvement of segmentation accuracy in plot detection (with the help of higher spatial 

resolution data) and reduction of cost acquisitions (acquiring only one or few images during the 

peak of crop development). 

 
4. Gap Filling and Cloud free images 

The presence of clouds can also affect the frequency and timing at which images are produced. 

The use of multi-sensor time series can help to overcome this issue, as well as the use of 

Sentinel-2 data (10m resolution, 5 days revisiting period with 2 satellites). 
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4 Example of concrete implementation: Italian Pilot 

area: Sannio Alifano Consorzio (province of Caserta, 

Campania Region) for year 2016 

The methodology described above was applied to map the irrigated area of Sannio Alifano 

Consorzio, located in Southern Italy, encompassing an irrigable surface of about 19,000 hectares 

divided in two districts: Sannio Alifano and Valle Telesina.  This region is shown in Figure 8. The 

study area is characterized by irrigated agriculture in the period from May to September, with 

main crops grown corn, alfalfa, fruit trees and vegetables. The average size of each plot is about 

2 hectares. An important source of knowledge for this study has been the irrigation information 

system used by the Consorzio Sannio Alifano. In 2013, the Consorzio set up a geographic 

information system (GIS) to streamline irrigation management.  The system, designed by the 

academic spin off company Ariespace srl., which is consulted and updated via web, allowed the 

Consorzio to generate single irrigation plot mapping referred to land parcels, irrigation districts, 

distribution networks, etc. and also integrates information supplied by the farmers about the 

type of cultivated crops, the time of planting and harvesting, the irrigation techniques etc. 

Figure 8 - Italian Pilot Area of Sannio Alifano Consorzio. It is divided in two irrigation districts: Sannio Alifano 

and Valle Telesina 
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4.1 Material and Method 

The proposed methodology is founded on the assumption that the hydrologic deficit typical of 

semi-arid environments, as for the Mediterranean basin, only detectable crops are those 

irrigated. In order to follow the phenological development of crops in the irrigated season, the 

considered approach is based on the use of a time series of the multispectral satellite images, 

opportunely processed in a semi-automatic workflow. In details, the Irrigated Areas (IA) 

detection process consists in different steps shown in the Figure 9. Each step is detailed in the 

following subsection. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 9 - Flowchart of the Irrigated areas detection process 
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4.2 Earth Observation data 

This application is based on the utilization of data from the Multispectral Instrument (MSI) on 

board of the Sentinel 2A & 2B platforms, with a swath width of 290km, permits to acquire 13 

spectral bands (443 -2190 nm) with a radiometric resolution of 12 bit and a spatial resolution of 

10 m, 20 and 60 m (ESA Earth Online). 

 

Acronym Spectral Band 
Center Wavelenght 
(nm) 

Band width (nm) 
Spatial 
resolution (m) 

B1 AEROSOL 443 20 60 

B2 BLUE 490 65 10 

B3 GREEN 560 35 10 

B4 RED 665 30 10 

B5 RED EDGE 1 705 15 20 

B6 RED EDGE 2 740 15 20 

B7 RED EDGE 3 783 20 20 

B8 NIR 843 115 10 

B8a NIR NARROW 865 20 20 

B9 WATER VAPOUR 945 20 60 

B10 CIRRUS 1380 30 60 

B11 SWIR 1 1610 90 20 

B12 SWIR 2 2190 180 20 

Table 5 - Spatial Resolution bands specifications of Multi Spectral Instrument (MSI) on board of Sentinel-2. 

 

 
To perform the irrigated areas detection a time series of S2A is selected. In details, considering a 

cloud cover less than 20%, eighteen images captured for the year 2016 are chosen (Table 6). 

Figure 10 - Spatial Resolution versus wavelength: Sentinel-2 span of 13 spectral bands, from visible and near 

infrared to the shorthwave infrared at different spatial resolutions ranging from 10 to 60 m on the ground. 
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Title Granule 
Acquisition Time 
(yyyy-mm-dd) 

T33 TVF 

20160107 

20160124 

20160206 

20160506 

20160625 

20160702 

20160712 

20160722 

20160725 

20160804 

20160814 

20160903 

20160920 

20160930 

20161030 

20161112 

20161129 

20161209 

Table 6 - S2A images used in the irrigated areas detection process 

 

4.3 Atmospheric correction 

For the EO applications, based on the multitemporal approach (i.e. change detection, land 

surface phenology, land cover classification, etc.) an atmospheric correction is one of the most 

important steps, with aim to convert the original digital data, generally in Digital Number (DN), 

into the specific physical magnitudes (Caselles & Lopez Garcia, 1989). In other words, the 

surface reflectance for each considered input data is required. 

 
In this application, to obtain the atmospherically corrected images a Data Service Platform is 

used. Implemented by the University of Natural Resources and Life Science in Boku (Austria) 

(Vuolo et al., 2016), this platform permits to access to individual S2 granules (extends 100 x 100 

km2 - UTM/WGS84 projection). The available data are derived from the conversion of S2 Level-

1C images (ToA-Top of Atmosphere reflectance) into Level-2A products (BoA – Bottom of 

Atmosphere reflectance), performed using the Sen2Cor processor. Sen2Cor is implemented by 

the ESA as a third-party plugin for the Sentinel-2 toolbox and it can be runs in the ESA Sentinel 

Application Platform (SNAP)  or directly from the command line. In addition, other output layers 
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are available such as Scene Classification (SCL), Aerosol Optical Thickness (AOT), Water Vapor 

(WV) and different Quality Indicators (QI) (ESA Sentinel Online). 

Furthermore, the Boku’s data service platform, available at this web page 

(https://s2.boku.eodc.eu/), offers other products as Leaf Area Index map (LAI) and 

Hemispherical-Directional Reflectance Factor (HDRF) using a specific neural network (NNT) 

algorithm developed by INRA (Baret et al., 2006). 

 

4.4 Clouds removing and gap filling 

As reported in the previous subparagraph, in this application each candidate images are selected 

considering a cloud coverage less than the 20 % of the full scene. Nevertheless, with aim to 

achieve a correct interpolation for the time-series of vegetation indices or surface reflectance 

values, the clouds removing and gap filling technique is executed. 

 
In details, to remove the clouds and relative shadows from each considered scene the Whittaker 

smoother is used (Eilers, 2003). This smoothing method adjusts a discrete series to discrete data 

and penalizes the roughness of the smooth curve. In other words, this method based on 

"penalized" least squares regression, improves the reliability of the data and roughness of the 

fitted data (Atkinson, Jeganathan, Dash, & Atzberger, 2012).  

 
In this study, the Whittaker smoother is executed using the MODIS Package (Mattiuzzi, 2017), 

implemented in R software (R-Project). Developed to process the Moderate Resolution Imaging 

Spectroradiometer data (MODIS), the smoother is adjusted on the S2 data. Particularly, the time 

series filtering is performed on the NDVI maps (described in detail in the next subsection), 

where considering for each scene the specific SCL mask, the cloud and shadow cloud pixels are 

replaced. 

 

4.5 Time series of NDVI maps 

In this phase, a NDVI map is obtained for each image of the time-series. Obviously, the NDVI 

maps are computed following the classical formula introduced by Rouse et al., (1973). In details, 

the specific S2 bands used in this computation are B08 (NIR) and B04 (Red), both characterized 

by a spatial resolution of 10 meters (Table 5). 
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Subsequently, a binary mask is applied for each NDVI maps, with the aim to delete those areas 

not interest in the irrigated crops detection process, as urban, mountain, wetlands, rivers, lakes 

and water basins. 

Finally, after the cloud removing and gap filling process (described in the previous subsection), 

to analyze the crop phenology and to detect the irrigated areas a temporal stack layer of the 

NDVI maps is generated. 

 

4.6 Multi-time classification 

4.6.1 Object-based Classification 

According to (Garcia-Pedrero, Gonzalo-Martin, Fonseca-Luengo, & Lillo-Saavedra, 2015), to 

deliver agricultural services based on EO data, a correct delineation of agricultural parcels is a 

fundament requirement and the high-resolution satellite images and machine-learning 

algorithms play a key role for these purposes.  Hence, in this work to detect the irrigated areas, 

the image segmentation process is applied, with aim to detect and delineate each individual 

parcel located in the study area. The object detection is performed, using the Large Scale Mean 

Shift (LSMS) algorithm, available as package in the Orfeo – ToolBox (OTB) software (Orfeo-

Toolbox). Implemented by (Michel, Youssefi, & Grizonnet, 2015), this image segmentation 

workflow is based on different steps.  

 

As input data, a temporal stack of S2 bands is used, choosing only fully cloud-free data. 

Particularly, the bands involved in this step are B03, B04 and B08 (Table 5), merged to create a 

temporal stack of NDVI maps in the final steps of the LSMS workflow. 

 

The final output of this elaboration step is a vector file, containing the polygons of the 

segmented image, with element attributes consisting of the mean and variance NDVI values for 

each date of the time series considered (Orfeo-ToolBox). 

 

4.6.2 Classification and recognition of irrigated crop temporal patterns 

The NDVI mean and variance values, extracted from each NDVI map included in the temporal 

series, are used to perform an unsupervised classification based on the multi-temporal 

approach. In other words, the classification process is performed at object-based level and the 
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chosen clustering method is the K-means (Hartigan & Wong, 1979), executed using the K-Means 

Clustering package available into R software (R Stats Package). 

To determine the optimal number of cluster the Elbow method is performed (RPubs) (Kodinariya 

& Makwana, 2013). Opportunely adjusted for the K-means clustering, this R code plotting the 

within cluster sum of squares and the number of clusters and permits to find the appropriate 

number of clusters, located theoretically in correspondence of the “bend or knee” of the curve 

(Figure 11). In our case, following this approach, the optimal number of cluster is fixed at 70, 

while 100 is the maximum number of classes and iterations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
In the subsequent step, each K-means class is analyzed, with the aim to associate the similar 

clusters into the potentially irrigated or not irrigated classes. This association is performed using 

the rainfall data and the crop phenology curves obtained plotting, for each class, the NDVI mean 

and variance temporal trends (Figure 12) (see Annex I). 

 
In details, considering also ground truth and others a priori knowledge the 70 K-means clusters 

are labeled in four classes, reported in the following table. 

 

Figure 11 - Elbow method plot 
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Recoded classes K-means classes 
Class A, not irrigated areas, low NDVI trend 
during the irrigation season (bare soil, 
uncultivated land, etc.) 

2,8,10,13,16,25,33,34,38,46,49,57,66,68 

Class B, irrigated areas, high NDVI trend during 
the irrigation season (Corn, Alfa alfa) 

1,3,4,5,7,9,12,15,17,19,20,23,24,26,27,28,30, 
31,32,35,36,39,41,42,48,50,51,52,55,56,60,61,62,65,67,69,70 

Class C, irrigated permanent crop, with a high 
and constant NDVI trend beyond the irrigation 
season (orchards and vineyards) 

6,11,14,18,21,22,29,37,40,43,44,45,47,53,54, 
59,63,64 

Class D, natural areas characterized by a high 
aboveground biomass, high NDVI trend with 
values close to 1 (woody and riparian areas) 

 

Table 7 - Recoding of the K-means classes 

                             

 

                                     

Figure 12 - Examples of the multi-time NDVI index curves: a) not irrigated area, b) irrigated areas, c) irrigated 

permanent crop area. 

(b) 

(c) 

(a) 



D2.1 EO Methodology for DIANA Services 

 

                                                                                                                                       
This project is co-funded by the European Union 46 |78 

 

4.7 Result and Discussion 

4.7.1 Irrigated map for season 2016 

The methodology implemented was applied to map the irrigated area for each district served by 

Consorzio Sannio Alifano (Figure 13). The results show that for irrigation season 2016, the total 

irrigated area is 14,020 hectares, with 42% of permanent crops (mainly vineyards and hazelnuts) 

and by 37% of herbaceous crops (mainly corn and alfalfa). In addition, with the aim to achieve a 

clearer overview and a more accurate quantitative analysis of the results, for each considered 

district the class surface in hectares was estimated. The results show that the Piana di Telese 

Piana Alifana Bassa e Piana di Riardo-Pietravairano- Pietramelara districts are characterized by 

an irrigated area over 1000 hectares, both for herbaceous and permanent crops (Figure 14). 

 

 

 

 

Figure 13 - Irrigated areas map obtained by the proposed methodology 
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4.7.2 Accuracy 

To estimate the thematic accuracy of the classification an error matrix is computed (Table 8). 

Considering opportune accuracy measures - Producer’s Accuracy (PA), User’s Accuracy (UA) and 

Overall Accuracy (OA) (Story & Congalton, 1986) (Congalton & Green, 2009) to perform the 

accuracy assessment of the irrigated areas 100 random sampling points are used. These test 

sites are visually interpreted using the crop development, S2A colour composites and Google 

Earth. As can be seen from Table 5.5, the OA of the detection process was 75%. The results of 

the accuracy assessment show high values of the PA and UA for the Not-irrigated and 

Herbaceous class. For the Permanent crop class similar results was achieved, but a lower UA was 

recorded 59%. 

 

Classification 
data 

Reference data 

Classes 
Not 
irrigated 

Herbaceous 
Permanent 
crop 

Total per class in the 
map 

Not irrigated 22 4 3 29 

Herbaceous 4 33 0 37 

Permanent crop 5 9 20 34 

Total per truth class 31 46 23 100 

Table 8 - Error matrix 

Figure 14 - Class surface in hectares for each district of the Sannio Alifano consorzio 
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Accuracy measures (%) Not-irrigated Herbaceous Permanent crop 
PA 71 72 87 

UA 76 89 59 

OA 75 

Table 9 - Thematic accuracy of the irrigated areas classification 

4.7.3 Gross Irrigation Water Requirements from EO data 

The estimation of abstracted volumes from groundwater, irrigation water requirement and crop 

water requirement based on EO data was performed using the approach described in the 

Section 4. In addition to this, an efficiency coefficient of 0.8 is applied to the estimated crop 

water requirements to take into account in a lumped way of all water losses occurring in the 

distribution network of irrigation canals and pipelines. We call this Gross Irrigation Water 

Requirement (GIWR).  

 
To quantify the goodness of this methodology, a comparison of the water volume applied and 

GIWR estimated from EO data was performed considering 24 farms. The information was 

provided, by the Consorzio Staff, in terms of cadastral coordinates - Municipality, Sheet and 

Parcel - and identity of land owners. The results of this investigation are plotted in the Figure 

5.8. In this phase, considering also the classification results, it was possible compare the 

irrigated area declared by the farmers and those estimated from EO data. An example is 

reported in the Figure 16. 

Figure 15 - Comparison of the water volume applied and GIWR estimated from EO data at Farm-Scale 
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4.8 Further developments 

Further lines of investigation could be examined to test and extend the results achieved by the 

proposed approach. Firstly, for the irrigation season 2017, also the imagery acquired by the S2B 

could be used, with aim to obtain a more dense NDVI temporal series. In fact, considering both 

S2 sensors, an increase of the temporal resolution is obtained, with only 2-3 days between the 

two acquisitions. In this way, can be achieved more details about the phonological crop trends 

during the irrigation season. In addition, is increased the availability of cloud-free images. 

 

Furthermore, different classification techniques will be tested to improve the detection of the 

irrigated areas (i.e. Random Forest), considering also the more information provided by the field 

inspections in the Sannio Alifano pilot areas. 

 

 

Figure 16 - Mismatch between the irrigated area declared and those estimated from EO data: a) Cadastral parcel (b) 

Declared irrigated area (boundered in red) c) Irrigated area estimated from EO data (boundered in red) 
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5 Seasonal drought forecasting and monitoring 

5.1 Drought Monitoring and Seasonal Forecasting System - Methodology 

The Drought Monitoring and Forecasting System aims to estimate present and future drought 

conditions through a modelling framework that is the combination of hydrological modelling, 

real-time weather data and seasonal climate forecasts. The system is consisted by the following 

three parts: 

In the first part, a historic, multi-decadal reconstruction of the terrestrial water cycle is obtained 

by forcing the NOAH-MP land surface model, using the MERRA6 reanalysis atmospheric dataset, 

to produce the soil moisture and precipitation climatology against which current and predicted 

conditions is compared. In the second part, the real-time monitoring system based on the 

NOAH-MP land surface model coupled with a channel-reservoir flow module using the coupler 

of the WRF-Hydro7 system, is forced by the atmospheric analysis fields that are produced by the 

atmospheric data assimilation system (LAPS8), in order to track present drought conditions. 

Finally, in the third part, bias-corrected and downscaled seasonal forecasting data from the 

CFSv29 climate model are used to force the NOAH-MP land surface model, to produce seasonal 

hydrological predictions and derived drought maps and other hydrological products out to six 

months. 

 

5.2 Data Requirements and Data Sources 

The drought monitoring, and seasonal drought forecasting system is using various 

meteorological data (observations, satellite derived products, reanalysis, forecasts etc.) to drive 

the WRF-Hydro modelling system to produce the hydrological data assimilation and seasonal 

prediction, and complementary data for the definition of the characteristics of the simulation 

domains of the models. Besides the data products described below, the system is also flexible 

enough to incorporate other sources of data including output from other models and prediction 

systems.  

                                                           
6 https://gmao.gsfc.nasa.gov/reanalysis/MERRA/ 

7 https://www.ral.ucar.edu/projects/wrf_hydro 

8 Jiang, Hongli, et al. "Real-time applications of the variational version of the local analysis and prediction system 
(vLAPS)." Bulletin of the American Meteorological Society 96.12 (2015): 2045-2057. 

9 https://gmao.gsfc.nasa.gov/reanalysis/MERRA/ 
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The data used by the system are collected from the following sources:    

MADIS Meteorological Data: The Meteorological Assimilation Data Ingest System (MADIS) is a 

meteorological database and data delivery system that provides atmospheric observations 

covering the globe. The observations are derived from multiple official and unofficial sources, 

including metar messages from surface weather stations, radiances and atmospheric profiles 

from satellites, airborne observations, station radiosondes and ocean meteorological 

parameters from ships and buoys. After the collection of the observations, the MADIS system 

decodes the ingested observations, perform a three-stage quality control and encodes all the 

data in a common format (CF-compliant netcdf). MADIS data set is continuously updated with a 

varied frequency from 1hour to 2days according to the requested atmospheric variable. The 

dataset concerning the meteorological information from surface weather stations is free to use 

both for commercial and noncommercial purpose, and it is available for downloading upon 

request through web10 or ftp11 server. The drought monitoring system is downloading 

operationally the MADIS data every hour in order to provide the vLAPS data assimilation system 

with weather observations from surface stations.   

 
GFS Weather Forecasting Data: The Global Forecast System (GFS) data is a global atmospheric 

dataset containing atmospheric information (analysis and forecast fields) produced by the global 

numerical weather prediction system GFS. GFS model runs operationally 4 times per day under 

the administration of National Center of Environmental Predictions (NCEP)/ National Oceanic 

and Atmospheric Administration and produces forecasts for 16 days ahead. GFS dataset covers 

the globe with a spatial resolution of 27Km for the first 8 days and with a spatial resolution of 

75Km for the last 8 days. NCEP/NOAA provides the data free of charge for commercial and 

noncommercial use through NCEP public ftp12 server. The GFS data are downloaded 

operationally every 6 hours and used by the vLAPS data assimilation system to define the 

background forecast error. 

 

CFS Seasonal Forecasting Data: The Climate Forecast System (CFS) data is a global seasonal 

forecasting dataset containing atmospheric and oceanic forecast fields produced by the global 

                                                           
10 https://madis-data.ncep.noaa.gov/madisPublic1/data/ 

11 https://madis-data.ncep.noaa.gov/ 

12 ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/ 

https://madis-data.ncep.noaa.gov/
ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/gfs/
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numerical climate model CFSv2. The CFSv2 is a climate model representing the global seasonal 

interaction between Earth’s oceans, land and atmosphere, and incorporates all the latest 

scientific advancements in data assimilation and climate simulation methodologies (Saha et al., 

2012). CFS model runs operationally 4 time per day under the administration of NCEP/Climate 

Prediction Center producing seasonal forecasts for the next 9 months. CFS dataset covers the 

globe with an approximately spatial resolution of 56Km and is available free of charge for 

commercial and noncommercial use through NCEP public ftp13 servers. CFS forecasts are 

downloaded every 6 hours including the analysis fields and all the forecast surface fields from 

“now” until the next 6 months. 

 
MERRA Reanalysis Data: Modern Era Retrospective Analysis for Research and Applications is a 

global reanalysis dataset containing atmospheric and hydrological fields produced by the 

Godard Earth Observing System (GEOS) atmospheric model and data assimilation system (DAS) 

(Rienecker et al., 2011). MERRA dataset focus on the satellite era from 1979 to present and 

covers the globe with an approximately resolution of 60km. The dataset is free to use both for 

commercial and non-commercial purposes, and it is available for downloading through a web14 

server. 

 
CMORPH Precipitation Data: The CMORPH Precipitation data are produced by using the Climate 

Prediction Center morphing technique (Al, Joyce, Janowiak, Arkin, & Xie, 2004).  This technique 

uses precipitation estimates that have been derived from low orbiter satellite microwaves 

observations exclusively, and whose features are transported via spatial propagation 

information that is obtained from geostationary IR satellites. The data is available free of charge 

for commercial and non-commercial purposes from the Climate Prediction Center. 

 
The EU-Digital Elevation Model: The EU-DEM is a 3D raster dataset with spatial horizontal 

resolution of 30m available from the European Environment Agency. The dataset based on 

SRTM and ASTER-GDEM data fused by a weighted averaging approach and is used for the 

definition of topography and channel routing of the WRF-Hydro simulation domains.  

 

                                                           
13 ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/cfs/  

14 http://disc.sci.gsfc.nasa.gov/uui/search/”MERRA” 

ftp://ftpprd.ncep.noaa.gov/pub/data/nccf/com/cfs/
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European Soil Database: The European Soil Database is a gridded soil database containing a 

large number of soil related parameters on a spatial resolution of 1x1km. The data if used for 

the definition of the soil hydraulic properties of the WRF-Hydro simulation domains.  

 

5.3 Atmospheric Data Assimilation System 

The atmospheric data assimilation system is based on the variational Local Analysis and 

Prediction System (vLAPS). The vLAPS is a variational atmospheric data assimilation and forecast 

system designed from NOAA to support situational awareness and nowcasting applications of 

high impact weather events (Albers, McGinley, Birkenheuer, & Smart, 1996) and it is used 

operationally by many national meteorological services and private weather companies across 

the world (Albers et al., 1996).  

The system is using the GFS analysis and near to analysis forecast data and is assimilating 

surface observational data (MADIS) and satellite retrievals for the precipitation estimates 

(CMORPH). vLAPS is operating by using one coarse outer domain and four high resolution 

nested domains (Figure 17). The coarse domain is covering most of the Europe and parts of 

Middle East and North Africa on a horizontal grid increment of 9Km and 48 vertical levels. The 

other four domains are covering the pilot areas in Spain, Italy and Romania on a horizontal grid 

increment of 3Km and 48 vertical levels, as well. The system runs every hour and the data 

assimilation products are available with 1.5 hours latency. The produced atmospheric fields of 

the data assimilation system are used by the drought system to define the current drought 

conditions and for the initialization of seasonal drought forecast. 
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5.4 Seasonal Climate Forecasts 

The seasonal forecast system is based on climate forecasts from the NCEP Climate Forecast 

System, version 2, which is the second-generation system from the CFSv1 and is a fully coupled 

land–ocean–atmosphere dynamical seasonal prediction system. The CFSv2 consists of the NCEP 

Global Forecast System, the Geophysical Fluid Dynamics Laboratory Modular Ocean Model 

version 5.0 coupled with a two-layer sea ice model, and the four layer Noah land surface model. 

CFSv2 is operating every day by utilizing the forecast cycles of 00, 06, 12 and 18UTC and produce 

all the needed data by the WRF-Hydro to perform the hydrologic simulation. The CFSv2 seasonal 

forecasts before used by the WRF-Hydro system are bias corrected and downscaled using a 

Bayesian merging method (Luo et al. 2007, 2008) to 9x9Km 6-hours resolution. 

 

Figure 17 – Data Assimilation Integration Domains 
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5.5 WRF-Hydro 

The WRF-Hydro modelling system version 3.0 is the heart of the drought monitoring and 

seasonal forecasting system. It contains several components of distributed hydrologic processes 

and channel flow, and is designed to enable improved simulation of land surface hydrology and 

energy states and fluxes at a fairly high spatial resolution (typically 1 km or less) using a variety 

of physics-based and conceptual approaches.  The WRF-Hydro in the framework of the drought 

monitoring and seasonal forecasting system is using the NOAH-MP land surface model coupled 

with the VIC hydrological model for channel routing and ground water flow.  

 
WRF-Hydro uses as input data the atmospheric fields of incoming shortwave and longwave 

radiation (W/m), specific humidity (kg/kg), air temperature (K), surface pressure (Pa), near 

surface wind components (m/s) and liquid precipitation rate (mm/s). Based on these input data, 

the system produces as output data surface heat fluxes, ground heat flux, ground surface and/or 

canopy skin temperature, surface evaporation components (soil evaporation, transpiration, 

canopy water evaporation, snow sublimation and ponded water evaporation), soil moisture, soil 

temperature, deep soil drainage, surface runoff, canopy moisture content, snow depth, snow 

liquid water equivalent, stream channel inflow, channel flow rate and channel flow depth.  

 
Model simulation domains is covering most of Europe and parts of the Northern Africa and 

Middle East with a grid resolution of 9X9Km, while the pilot areas are covered with a higher 

resolution grid of 250mX250m on a river basin scale. To define the surface boundary conditions 

for the land surface model, the land cover map based on CORINE land use/cover database is 

used along with vegetation data derived from MODIS TERRA, and soil type and texture based on 

the European Soil Database15. To initialize the NOAH-MP model and to avoid imbalances 

between the hydrological fields, for the reconstruction of the 30-years’ terrestrial water cycle 

climatology, the model have been forced with 38 years’ MERRA data, using the first 8 years for 

model spin-up. 

 

                                                           
15 http://esdac.jrc.ec.europa.eu/content/european-soil-database-v20-vector-and-attribute-data 
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5.6 Drought Indices  

The system uses a set of different drought indices to identify the occurrence and the type of a 

drought event, as well as to estimate the severity of the event. The drought indices that are 

used by the system are the following:   

Standardized Precipitation Index (SPI): Drought events are indicated when the results of SPI, for 

whichever timescale is being investigated, become continuously negative and reach a value of 

−1. The drought event is considered to be ongoing until SPI reaches a value of 0. The ability of 

SPI to be calculated at various timescales allows for multiple applications. Depending on the 

drought impact in question, SPI values for 3 months or less might be useful for basic drought 

monitoring, values for 6 months or less for monitoring agricultural impacts and values for 12 

months or longer for hydrological impacts. 

Standardized Precipitation Evapotranspiration Index (SPEI): SPEI uses the basis of SPI but 

includes a temperature component, allowing the index to account for the effect of temperature 

on drought development through a basic water balance calculation. SPEI has an intensity scale 

in which both positive and negative values are calculated, identifying wet and dry events. It can 

be calculated for time steps of as little as 1 month up to 48 months or more. Monthly updates 

allow it to be used operationally, and the longer the time series of data available, the more 

robust the results will be. With the same versatility as that of SPI, SPEI can be used to identify 

and monitor conditions associated with a variety of drought impacts.  

Palmer Drought Severity Index (PDSI): Calculated using monthly temperature and precipitation 

data along with information on the water-holding capacity of soils. It takes into account 

moisture received (precipitation) as well as moisture stored in the soil, accounting for the 

potential loss of moisture due to temperature influences. Developed mainly as a way to identify 

droughts affecting agriculture, it has also been used for identifying and monitoring droughts 

associated with other types of impacts.  

Effective Drought Index (EDI): Uses daily precipitation data to develop and compute several 

parameters: effective precipitation (EP), daily mean EP, deviation of EP (DEP) and the 

standardized value of DEP. These parameters can identify the onset and end of water deficit 

periods. Using the input parameters, EDI calculations can be performed for any location in the 

world in which the results are standardized for comparison, giving a clear definition of the onset, 

end and duration of drought. A good index for operational monitoring of both meteorological 

and agricultural drought situations because calculations are updated daily. 
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Crop Specific Drought Index (CSDI): By calculating a basic soil water balance, it takes into 

account the impact of drought, but identifies when the drought stress occurred within the 

development of the crop and what the overall impact to the final yield will be. PDSI and CMI can 

identify drought conditions affecting a crop, but do not indicate the likely impact on yields.  

Soil Moisture Deficit Index (SMDI): A weekly soil moisture product calculated at four different 

soil depths, including the total soil column, at 0.61, 1.23 and 1.83 m, and can be used as an 

indicator of short-term drought, especially using the results from the 0.61 m layer. 

Evapotranspiration Deficit Index (ETDI): A weekly product that is helpful for identifying water 

stress for crops. ETDI is calculated along with the Soil Moisture Deficit Index (SMDI), in which a 

water stress ratio is calculated that compares actual evapotranspiration with reference crop 

evapotranspiration. The water stress ratio is then compared with the median calculated over a 

long-term period. ETDI is very useful for identifying and monitoring short-term drought affecting 

agriculture. 

The reason that the system uses too many drought indices is twofold, from the one hand we 

need different indices to identify different types of drought and on the other each index has 

different performance in each area.  
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6 Support for the implementation and monitoring of the 

WFD 

 

6.1 Water Framework Directive: General aspects 

The Water Framework Directive (WFD) is one of the most significant pieces of EU environmental 

legislation to date and considers, for the first time, the management of water within the context of 

the natural river basin as opposed to within traditional political and administrative boundaries. 

The Directive establishes a framework for the protection of all water bodies (surface, transitional, 

coastal and underground) as it is described in its first article, in order for Member States to prevent 

further deterioration and improve the status of their waters and protect them by ensuring pollution 

reduction and control from all sources such as agriculture, industrial activity and urban areas impact 

in order to achieve “good status” objectives for water bodies throughout the EU. More specifically, 

the main objectives of WFD include: 

 Prevent further deterioration and protect and enhance status of aquatic ecosystems.  

 Promote sustainable, balanced and equitable water use based on long term protection of 

available water resources.  

 Enhance the improvement of aquatic environment through the implementation of specific 

measures for the reduction of emissions of toxic substances. 

 Ensure the progressive reduction of pollution of groundwater and prevent its further 

pollution. 

 Mitigate the effects of extreme flood and drought events.  

The EU Water Framework Directive covers a number of different steps for achieving “good status” 

of water bodies. Member States have been required to implement these different steps in order to 

accomplish WFD’s main objectives. The required steps include: 

 River Basin characterization (typology and reference conditions, water body delineation, 

pressures and impacts assessment using DPSIR methodology for risk assessment) 

 Registration of protected areas  

 Establishment of programmes for the monitoring of water status of surface water bodies, 

ground water bodies and protected areas. 
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 Establishment of River Basin Management Plans for each river basin district that must be 

reviewed and reissued every 6 years. 

 Implementation of the necessary measures within integrated programmes of measures. 

 Implementation of pricing policies and encouragement of sustainable water management. 

The framework for delivering the Directive is through River Basin Management Planning. RBMPs will 

integrate a great lot of the implementation activity of the WFD and represent the principle 

mechanism for meeting the WFD’s objectives. The contents of these plans include among others the 

Environmental Objectives that have been set to achieve the purpose of the Directive of protecting 

all Water Bodies, analysis of pressures and impacts of the economic activities and the proposed 

measures that should be taken in order to achieve WFD’s objectives. 

One of the innovative elements the Directive 2000/60 introduced is that for the first time in EU 

environmental policy, a legal text (Directive) proposes economic principles and economic tools as 

key measures to achieve specific environmental objectives. The Directive is trying to balance 

between social, environmental and economic value of water.  

One of the main tools that WFD introduces is the cost recovery of water services, including the 

environmental and resource cost, in accordance with the polluter-pays principle. In this context, 

Member states are required to price water in a way that ensures the full cost recovery and provides 

adequate incentives to use it efficiently, through the following tasks: 

 Determination of water services providers, users and polluters  

 Estimation of total cost of water services (financial, environmental and resource cost)  

 Identification of cost recovery mechanism and cost allocation to the users  

 Estimation of the level of cost recovery.  



D2.1 EO Methodology for DIANA Services 

 

                                                                                                                                       
This project is co-funded by the European Union 60 |78 

Earth observation is considered one of the most cost-effective methods for providing the spatial 

and temporal environmental data that are necessary for fulfilling the requirements of effective 

monitoring and implementation of the WFD. In recent years, earth observation techniques are 

being incorporated in the implementation procedures of WFD more often, as Earth Observation 

provides access to a wide range of water monitoring parameters from different satellite data 

sources.  

Earth observation techniques are more often implemented as a complement to in-situ estimations 

in the stage of water bodies’ classification and more specifically during water quality monitoring 

(surveillance, operational, investigative monitoring), providing data regarding biological, 

physicochemical and hydro-morphological quality elements (i.e. Chlorophyll-a, algal blooms, 

turbidity, water extent, hydro-morphological changes etc) (Malve et al. 2016; Chen et al. 2004). 

Additionally, land-use changes and particularly crop change detection as part of pressure analysis 

constitutes one of the most common application fields for earth observation approach.  

  

6.2 Agricultural Activity and WFD 

Agricultural activity remains a key source of non-point pollution in EU that exerts significant 

pressures mostly on surface water and groundwater, as well as on groundwater dependent 

terrestrial ecosystems such as wetlands. Main pressures that are generated by agricultural activity 

are water abstraction for irrigation purposes, fertilizers and pesticides application, hydro-

morphological modifications for reclamation for agricultural land in riparian and wetland areas, the 

alteration and status of the riparian areas etc.  

Agriculture is a significant water user in Europe. Ineffective water management in agricultural sector 

may have negative impacts on both quantity and quality of related water bodies. Over-abstraction 

of water constitutes one of the most common pressures that put many surface and ground water 

bodies at risk, especially in areas where drought events occur. Also, over-abstraction of water and 

more specifically the importance of non-authorized abstractions, which remain out of record and 

may play a substantial role in over-abstraction, were highlighted in the Blueprint to Safeguard 

Europe’s Water Resources (Communication COM/2012/673) as significant pressures impeding the 

achievement of Water Framework Directive’s (WFD) good status objectives. 

The significance of the above-mentioned pressure is reflected on the important impacts that are 

generated on quality and quantity of related water bodies. These impacts include change of 
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groundwater levels, water quality deterioration, groundwater salinization, reduction of the flow of 

rivers and springs, indirect impacts on biodiversity, increase of desertification risk in some areas, 

modification of dependent aquatic or terrestrial ecosystems, habitat loss, hydro-morphological 

modifications etc. 

Pressures from agriculture can be mitigated or prevented through an appropriate programme of 

spatiotemporal distributed measures based on precise data in order to be more effective. These 

measures could include targeted application of best management practices based on spatial and 

temporal information, crops allocation etc. 

Member states dealing with non-authorized abstractions face the problem of lack of data and tools 

that could enable them to manage these unsustainable practices. Data such as crop spatial 

distribution, volume of abstracted water etc. are not usually available; as a result, it is not feasible 

to develop specific measures for addressing the related pressures. 

Earth Observation (EO) was identified in the Blueprint to Safeguard Europe's Water Resources as a 

promising approach to address quantitative issues related to water, through the detection of 

possible cases of non-authorised abstraction and as a complement to the often-limited field data 

available. 

6.3 Support of WFD 

6.3.1 Recycling the data produced from the DIANA Services  

In the frame of The Detection of Non-Authorised Water Abstractions and Drought Monitoring and 

Seasonal Forecasting services of DIANA project, a huge amount of high spatial and temporal 

resolution data on river basin scale will be produced. The data produced are among others the 

detection of non-authorised irrigation, the total abstraction volume for irrigation, seasonal drought 

forecasting and monitoring, maps of Potential Evapotranspiration, maps of Crop Evapotranspiration, 

maps of Precipitation. These data products could be a potential data source to support the 

implementation of the WFD and more specifically on the following areas: 

- Analysis of Pressures and Impacts (IMPRESS Analysis) 

- Monitoring Programmes for surface and ground water bodies 

- Programme of Measures through the process of river basin management plans  

- Recovery of costs for water services through water pricing 
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The above-mentioned areas constitute the main stages of the implementation process of WFD. The 

produced data will contribute to the improvement of the methodologies of these areas and in turn 

to the achievement of the WFD’s environmental objectives. 

6.4 Areas of WFD to which produced data contribute 

6.4.1 IMPRESS analysis  

The “risk assessment” which is a process in the context of the implementation of WFD includes the 

methodology of analysing pressures and their impacts using the Driver, Pressure, State, Impact, 

Response (DPSIR) framework. This analysis which is required in the design of monitoring 

programmes and helps developing the programme of measures should be repeated in a six-year 

cycle in the context of implementing the River Basin Management Plans (RBMP). 

As it has already been mentioned, water abstraction for irrigation is considered to be one of the 

major pressures that exert impact on both surface and ground water bodies. More specifically, over-

exploitation contributes to surface water desiccation, especially of non-perennial rivers (Skoulikidis 

et al. 2016), through lowering of the groundwater table. Additionally, to the significant lowering of 

the groundwater tables, drying out of springs, degradation of wells and boreholes, and salt-water 

intrusion are among the main impacts that water abstraction cause (Skoulikidis et al. 2016). 

Nevertheless, illegal water abstraction may account for a high percentage of the total water 

abstraction, but it is not included in water consumption calculations. So, the detection of illegal 

water abstraction that takes place in the context of the project DIANA will result to a more accurate 

and integrated identification of water abstraction pressure.   

Additionally, abstracted volume for irrigation can be used as a quantitative indicator for pressure. 

This indicator compared against computed recharge for each groundwater body would result in 

groundwater abstraction risk assessment. A spatiotemporal differential pressure will be assessed by 

using of high spatial and temporal resolution data produced by the Detection of Non-Authorised 

Water Abstractions service of the project. In addition, produced data such as precipitation maps, 

maps of Potential Evapotranspiration, maps of Crop Evapotranspiration and soil moisture maps 

could be used in groundwater recharge calculations depending on the computational method. 

Finally, the integration of the data into a geographical information system contributes to the 

regional differentiated quantification of water abstraction pressure. 



D2.1 EO Methodology for DIANA Services 

 

                                                                                                                                       
This project is co-funded by the European Union 63 |78 

The produced data could be further used by models simulating point and diffuse pollution and 

calculating water balances in order to estimate the impact of economic activities on surface and 

ground water bodies in river basin scale. The accuracy of the input data to these models is one of 

the crucial factors that affect the quality of produced data. Usually, regarding the irrigation volume 

data and potential evapotranspiration, modelers have no accurate data for their simulation. Data 

produced by the first service of the project will fill this gap. Moreover, the accuracy of the 

simulation results depends a lot on validation data used. The high resolution produced data by the 

Detection of Non-Authorised Water Abstractions service can be used for models validation.  Use 

and apply of groundwater – surface water models for calculating water balances in river basin scale 

is also proposed by Guidance Document No 34 (Water Balances Guidance). 

6.4.2 Monitoring Programme 

The monitoring programmes must provide the information necessary to assess whether the 

Directive’s environmental objectives will be achieved. Monitoring actions include surveillance and 

operational monitoring for both surface and ground water bodies and investigative monitoring only 

for surface water bodies. Regarding ground water bodies, monitoring requirements should include 

chemical status and quantitative assessment of all the groundwater bodies being at risk. 

Quantitative assessment is crucial as groundwater hydrological alterations affect 

hydromorphological quality elements (i.e. flow regimes of rivers, water level of groundwater 

dependent wetlands etc.) which in turn affect water quality of aquatic ecosystems and related 

habitats.  

Establishment of a complementary representative sampling network and suitable sampling 

frequencies taking into account the continuous, updated, temporally and spatially distributed 

produced data of abstracted volume for irrigation will contribute to the classification of all water 

bodies.  

Moreover, after researchers had recognized that environmental flow is a key measure for restoring 

and managing river ecosystems (Acreman and Ferguson, 2009), the WFD proposes that ecological 

flows (that is the "amount of water required for the aquatic ecosystem to continue to thrive and 

provide the services we rely upon") may be applied in the next cycle of river basin management 

plans (RBMPs). These flows comprise a measure towards good surface water status and good 

quantitative groundwater status which should be estimated and applied for water bodies which 
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failed to reach “good ecological status” due to hydrological alterations (Theodoropoulos and 

Skoulikidis, 2015). The assessment and application of environmental flows follow a specific 

framework with specific steps, proposed by WFD. Monitoring abstracted water for irrigation that is 

produced data by the Detection of Non-Authorised Water Abstractions service, is a key parameter 

in two of the abovementioned steps; identification of water bodies at hydrological risk and 

monitoring the current hydrological state. 

6.4.3 Programme of measures  

The whole process of river basin management planning includes the preparation of programmes of 

measures at basin level for achieving the environmental objectives of the Water Framework 

Directive cost-effectively. Programs of Measures should cover the gap between the current 

situation and the good status. The spatiotemporal distribution of water abstraction pressure would 

contribute to a more accurate and spatiotemporal targeted measures. 

More specifically, proposed measures aiming at mitigating the impacts from water abstraction 

pressure may include crop pattern allocation, best agricultural practices, definition of water 

abstraction limits, controls of the abstraction of surface and ground water etc. The produced data in 

the context of the project DIANA will enhance the effectiveness of the proposed measures 

promoting sustainable water use, as they can influence the place and the time of the activity which 

apply best.  

Additionally, the continuous updated monitoring of water abstraction volume will contribute to the 

evaluation of the implementation of proposed measures. In particular, the detection of illegal 

abstractions and the estimation of total water abstraction volume could indicate if the proposed 

water abstraction limits are being met, the proposed crop allocation is applied etc. 

6.4.4 Water pricing and recovery costs of water services  

In the frame of the implementation of WFD, Member States are required to price water in a way 

that ensures full cost recovery and provides adequate incentives for a better use of available 

resources and shifting to less polluting input and practices. For every water use, such as agricultural, 

the total cost, including environmental and resource cost, should be estimated. According to 

Wateco guidance (2002) environmental cost represents the costs of damage that water uses impose 

on the environment and ecosystems and those who use the environment and resource costs are 
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defined as the costs of foregone opportunities which other uses suffer due to the depletion of the 

resource beyond its natural rate of recharge or recovery. Resource costs concerns only groundwater 

bodies when the amount of annual pumping exceeds the average annual enrichment.  

A significant amount of groundwater abstraction and surface water abstraction -but to a lesser 

extent- takes place without being registered or monitored. So, the challenge of water pricing in 

agriculture is that non-authorised water abstraction is not estimated in total water consumption by 

authorities in charge. To address the problem of including non-authorised water abstraction to the 

total water consumption estimations and thereby resource cost estimation, a form of extraction 

control or an efficient monitoring system has been proposed (Bogaert et al. 2012; Lockwood, 2014). 

In this context, the detection of irrigated areas, including the non-authorized irrigated areas, 

highlights the regions with the highest water demand that have to bear the cost of using the 

resource. 

Additionally, the pressure of water abstraction for irrigation is more intense during summer or 

drought events. Furthermore, there is a great variability of agricultural conditions and 

characteristics such as probability of drought across basins. For these reasons, the estimation of 

environmental and resource costs should be differentiated temporally and spatially. The 

spatiotemporal resolution of the produced data from the two services of the project (detection of 

irrigated areas, water abstraction volume for irrigation, seasonal drought forecasting and 

monitoring) could contribute to a more effective determination of service users and polluters and 

accurate estimation of resource costs.  

6.4.5 Advantages of produced data recycling 

Use of all the above-mentioned data that were produced using Earth Observation techniques, for 

supporting the WFD, provides many advantages on both the implementation procedures and the 

produced results. First of all, the high spatial and temporal resolution of the data contributes to the 

more accurate identification of water abstraction pressure and its quantification. The spatial and 

temporal distributed pressure will result to a most accurate, continuous and long-term monitoring 

program, providing spatially and temporally denser information and improved frequency of data. As 

a result, a more targeted spatially and temporally programme of measures could be established.  

By monitoring these data, stakeholders that are in charge of water management, inspections and 

implementation of WFD would ensure the reliability of self-declarations on water abstractions, 
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optimize field inspections to ensure compliance with legal water allocation and could validate a 

volume-based system for water pricing. Additionally, comparing with data produced by the Drought 

Monitoring and Seasonal Forecasting service, it would be feasible to ensure compliance with 

seasonal water restrictions in case of drought management.  

Lastly, as WFD is a European framework there is a need of consistent and comparable results, which 

will be obtained during all stages of the implementation of the Directive, by all European countries 

and regions. Use of earth observation techniques in the context of the implementation of WFD, 

would provide these advantages and could be a crucial factor for a successful implementation of the 

Directive.  
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7 Annexes 

7.1 Annex I: Multi-time NDVI index curves – Sannio Alifano Case Study 

2016 
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